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Abstract— High-speed direct modulation capability was
investigated in 1.55-um GalnAsP/InP distributed reflector (DR)
lasers with wirelike active regions in terms of carrier transport
from GalnAsP optical confinement layers (OCLs) to the active
regions. Theoretical analysis revealed strong dependence of the
modulation bandwidth on the thickness of the OCLs and width
of the wirelike active regions. To confirm this prediction, two DR
lasers with OCLs of different thicknesses (120 and 40 nm) were
fabricated and their 3-dB bandwidths (f3 gg) under small-signal
modulation were compared. The device with the narrower OCL
exhibited f3 gp exceeding 15 GHz and clear eye opening under
25 Gb/s modulation, whereas that with the thicker OCL had
f3 g of only 2 GHz. These results were in good agreement with
the theoretical predictions.

Index Terms— Distributed reflector (DR) laser, high-speed
modulation, low power consumption, semiconductor laser.

I. INTRODUCTION

HE rapid increase in data traffic due to the emergence
of innovative services delivered through broadband
Internet demands access networks with higher bit rates.
Therefore, high-speed communication technologies such as
40 and 100 GbE are being standardized and developed. For
the long-wavelength range, wavelength division multiplexing
of four wavelengths times 25 and 10 Gbps is used in 100 and
40 GbE, respectively.
Thus, research efforts to realize such high speeds with
inexpensive modules have mainly focused on distributed
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feedback (DFB) lasers integrated with an electroabsorption
modulator [1-3] (EML) and direct modulation lasers [4-7]
(DMLs) designed for high modulation efficiencies. Although
EMLs are used in first-generation 100 GbE modules owing to
their speed capability and relatively low chirping, DMLs could
have advantages such as low power consumption and cost-
effectiveness for future-generation modules. DFB lasers inte-
grated with a passive feedback section [8, 9] and distributed
Bragg reflector (DBR) lasers having a short gain section [10]
have also been studied. A stable single-mode operation and
good dynamic properties of DFB lasers with etched quantum-
wells structure were demonstrated [11, 12], and a sub-mA
threshold current operation as well as a stable single-mode
operation was demonstrated for DFB lasers with vertically
etched wirelike active regions [13].

A distributed reflector (DR) laser, consisting of DFB and
DBR sections, is a good candidate design for a DML in such
applications since stable single-mode operation with high out-
put efficiency from one side facet can be attained and superior
lasing properties such as modulation sensitivity and spectral
chirping have been theoretically predicted [14]. Recently, DR
lasers with GalnAsP multiple-quantum-well wirelike active
regions, as shown in Fig. 1, have been demonstrated with a low
threshold current of around 1 mA, high differential quantum
efficiency of around 50%/facet, and a stable single-mode
property with a sub-mode suppression ratio (SMSR) exceeding
40 dB because of the small volume of the active region and
a strong index-coupling grating structure [15-17]. However,
their 3 dB bandwidth under direct modulation was measured
to be less than 10 GHz even though data transmission of
5 Gbps-10 km and 10 Gbps-10 km were achieved [18].

In this paper, we discuss the theoretical modulation band-
width of DR lasers with wirelike active regions limited by
carrier transport from GalnAsP optical confinement layers
(OCLs) to wirelike active regions and then compare with
experimental results for two types of DR lasers with different
OCL thicknesses. As a result, the 3 dB bandwidth of the DR
laser with the thin (40 nm) OCL was 15 GHz, which was
much greater than that obtained with a thicker (120 nm) OCL,
and high-speed operation was demonstrated with relatively low
power consumption. In section 2, the 3 dB bandwidth depen-
dence on the thickness of the OCL is given with a parameter
of the width of wirelike active regions. Section 3 explains
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Fig. 1. Schematic and cross-sectional structures of DR laser with wirelike
active regions.
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the device structure and fabrication processes of DR lasers
used for measurements of direct modulation characteristics. In
section 4, fundamental light output properties and modulation
characteristics, such as the bias current dependence of the
relaxation oscillation frequency and small signal response of
two types of DR lasers are given and discussed. Large-signal
modulation experiments at 10 and 25 Gbps are also presented.

II. MODEL AND THEORETICAL ANALYSES
OF 3-dB BANDWIDTH

Figure 2 is a cross sectional schematic diagram of (a) the
separate—confinement heterostructure (SCH) consisting of a
quantum-well (QW) active region sandwiched by OCLs and
(b) a SCH with wirelike active regions. It is known that carrier
transport in the OCLs restricts the modulation bandwidth and
this is mainly governed by the classical current continuity
equations that describe the diffusion, recombination, and drift
of carriers across the SCH in the presence of an electric field.
The transport time tocr, and 3dB cut-off frequency f34B_ocL
due to the carrier transport in the OCLs obtained from the
current continuity equations [19, 20] are

2
TocL = —LOCL,
2D,
1 2
fraB_ocL = (D

2
2w tocL 2w Loyer

where Locy is the thickness of the GalnAsP OCL and D, =
2D, Dy/(D,, + Dy) is an ambipolar diffusion coefficient (D,
and Dy, are the diffusion coefficients of electrons and holes,
respectively). It is known that the 3dB frequency is inversely
proportional to the square of Locr; hence, it is sensitive to
the thickness of the OCL.
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Fig. 2. Cross-sectional structures of (a) SCH QW active region and
(b) SCH with wirelike active regions.

Figure 2(b) shows that carriers in the OCL below the
groove embedded with InP are transported a distance longer
than LocL; hence, an effective length Locr grr should be
considered for DFB or DR lasers consisting of wirelike active
regions. In this work, we estimated the carrier-transport portion
of the modulation bandwidth (3 dB frequency f34g_ocL) of
wirelike active regions by numerical calculation using the two-
dimensional diffusion equation and discretized it employing
forward-time centered space. The two-dimensional diffusion
equation is expressed as

2 2
6T();, v, 1) _ Dh8 T(x,zy, 1) n Dhﬁ T(x,zy, )
t ox oy

where T (x,y,t) is the carrier density at position (x, y) and
time t. We calculated the diffusion of holes because the
limitation of diffusion is dominated by the holes owing to
their mobility being lower than that of electrons. Through
discretization, the equation can be modified as

2

D,t
T(xj, k> tn1) = T(xj, Yk, tn) + h%{T(xj +h, Yk, tn)
X
+T(xj — h, Yk ta) — 2T (), i, 1) }
D,t
+hL2{T(xj» Yk + h, ty)
2
+T(xj, yk — by ta) = 2T (xj, vk, 1)} (3)
where
Xkl — Xk = hy
Yi+1 —Yyj = hy
el — In = Ting- “)

Using these equations, we calculated the time response of
the current on the side of the QW to the input step current
on the edge of the cladding layer at the p-side OCL, and the
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Fig. 3. Model used in the calculation.
TABLE I
PARAMETERS USED IN THE CALCULATION
Time interval Tint 5x 10716
X spacing hx 2 nm
¥ spacing hy 2 nm
Hole mobility Hh 100 cm?/V/s
Diffusion coefficient Dn =,ul;B Tiq 2.6 cm?/s
Pitch A 240 nm
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Fig. 4. 3-dB bandwidth dependence on various wire widths.

3 dB frequency f3g_ocL, which is limited by the diffusion
time depending on the thickness of the OCL (LocrL) and
the width of the wirelike active region (W,), was estimated
from the rise time #;s using an approximation of f3gg_ocL ~
0.35/tsise. Figure 3 shows the model used for the calculation,
and parameters used are listed in Table 1. The pitch A is
240 nm and the thickness of the embedded InP layer in the
groove region is assumed to be half of LocL. The typical value
of 100 cm?/V/s was used for the mobility of holes.

Figure 4 shows the calculated f34p_ocr, dependence on the
OCL thickness for various widths of the wirelike active region.
Itis seen that f34B_ocL,qw for lasers consisting of a QW active
region is inversely proportional to the square of LocL, and it
is approximately 9.5 GHz in the case of LocL, = 100 nm,
while that for DFB/DR lasers consisting of wirelike active
regions f3dB_OCL,Wirelike 1S approximately 3 GHz in the case
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Fig. 5. Relationship between f;- and f3 4g_TOTAL ©n various wire widths.
(a) 100 nm of LocL. (b) 40 nm of LocL. Dashed lines denote the relation
of f3 4B _ToTAL = 1.55 fr (showing photon life time limit).

of Loc. = 100 nm. f3¢g_ocL reduces as the width of the
active region becomes narrower, and f3dB_0OCL, Wirelike becomes
less than (Wg/A) fags because carriers injected into the OCL
beneath the central part of the groove region should be
transported an additional distance of A/2 compared with those
injected into the OCL beneath the wirelike active regions.

Next, the relationship between the f; and total 3dB band-
width f3gg ToTAL Was calculated by solving the frequency
response, Eq. (5) [19], and is shown in Figs 5(a) and 5(b)
for LocL, = 100 nm and 40 nm, respectively. It is noteworthy
that the f3gp_ToTaL tends to saturate for LocL = 100 nm due
to the limitation of carrier transport whereas such tendency is
not so strong for Locr, = 40 nm.

)

M) 1 A
) = .
1+ jotocr) 0} — o + joy

f3dB,wirelike = 10 GHz can be attained for Ws = 80 nm
and LocL = 40 nm, but a thinner OCL results in less optical
confinement in the active region. Therefore, introducing a
thinner OCL with consideration of the balance of the optical
confinement factor and carrier transport is important to achieve
high-speed and low-power-consumption DR lasers with wire-
like active regions.

III. DEVICE STRUCTURES AND FABRICATION PROCESS

Two kinds of DR lasers with a relatively thick (120 nm) and
thin (40 nm) OCL beneath the active regions were fabricated
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Fig. 6. Cross-sectional SEM views of the DFB section of (a) thick OCL
device: a two-QW active region with OCL thickness of 120 nm and (b) thin
OCL device: a five-QW active region with an OCL thickness of 40 nm.

and their lasing properties compared. Figure 6 shows cross-
sectional scanning electron microscope views of (a) the thick
OCL device: a double quantum-well (two-QW) wirelike active
regions (W, = 90 nm, A = 242.50 nm) with p-side OCL
thickness of 120 nm and (b) the thin OCL device: five-QW
wirelike active regions (W, = 115 nm, A = 242.50 nm) with
p-side OCL thickness of 40 nm. The optical confinement factor
of the initial two QWs is 2.2% (1.1%/well), while that of
the five QWs is 4.75% (0.95%/well). It is noted that although
the thicknesses of the n-side OCL of the two structures
differ, the difference has practically no effect owing to the
much greater mobility of electrons. For example, using the
typical electron mobility of InP as 5000 cm?/v/s, the diffusion
coefficient becomes 0.013 m?/s. In such a case, the expected
bandwidth results in fzgs oc. > 40 GHz with LocL of
300 nm, and hence the i-InP grown on the wirelike active
regions can’t be a limiting factor of the modulation bandwidth.

Figure 7 shows the fabrication processes for DR lasers
with wirelike active regions using electron beam lithography
(EBL), CH4/H> reactive-ion-etching (RIE), and embedding
growth by organometallic vapor-phase-epitaxy [16, 17]. EBL
was carried out to produce the desired wirelike patterns, which
were transferred to a SiO; mask to etch away the QWs and
OCLs through CH4/H> RIE. Undoped-InP was then regrown
into the groove regions at 600 °C with a low growth speed,
and an upper OCL (40 nm thick), an n-InP cladding layer,
and a 50-nm-thick n™-GalnAs contact layer were grown at
650 °C. Afterward, a high-mesa stripe structure was produced
through a combination of wet chemical etching and CH4/H»
RIE. Benzocyclobutene was spin-coated and then etched back
by CF4/O; RIE to planarize the entire surface. Next, 50-nm-
thick SiO, was deposited and contact windows were opened.
Finally, the substrate side was polished to a wafer thickness
of around 100-150 um, and Ti/Au was evaporated onto the
p- and n-sides and lift-off was carried out for the contact
pad on the n-side. An electrode pad of 80 um diameter was

Active layer

EB resist Si0,

Fig. 7. Fabrication processes. (a) Initial wafer. (b) EB lithography. (c) CF4
RIE. (d) CH4/Hy RIE. (e) Regrowth. (f) Stripe etching. (g) BCB coating.
(h) Deposition Electrodes.

produced so as to obtain a low parasitic constant for high
modulation bandwidth.

IV. LASING CHARACTERISTICS AND DISCUSSION

Static and dynamic lasing characteristics of the fabricated
DR lasers were measured after mounting the lasers on an AIN
submount with a 50 Q matching co-planar circuit with a series
resistance of 40 Q for impedance matching.

Figure 8 shows the current-light output (/-L) charac-
teristic of the fabricated thick OCL device with two-QW
wirelike active regions and Locr. = 120 nm. Both facets
were simply cleaved and no facet coating was applied. Under
room-temperature continuous-wave (RT-CW) conditions, a
low threshold current (Iy,) of 1.0 mA and differential quantum
efficiency from the front facet (54f) of 19% were obtained
with a DFB section length of 170 um and stripe width
of 2.0 um. The threshold current density normalized by
the area of the contact window (170 ym x 2.0 gm) was
294 A/cm?2, which was around 3 times the record low value
(94 Alcm?) of the DFB laser with two-QW wirelike active
regions with a relatively long cavity (600 um) and wide
mesa stripe (19.5 um) structure [21]. The lowest threshold
current of 0.7 mA was reported for the DFB laser with two-
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QW wirelike active regions with buried hetero (BH) structure
and a similar cavity length (200 um) and a stripe width
of 2.3 um [22, 23], and the threshold current density was
130-140 A/cm?. Since the surface recombination velocity
of the injected carriers at the regrown interfaces of the BH
structure is very low compared with that of the sidewalls
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Fig. 12. Relaxation frequencies of DR lasers from RIN measurement.

of the high mesa stripe geometry, slightly higher threshold
current density of the present DR laser can be attributed to
non-radiative carrier recombinations at the sidewalls.

Figure 9 shows the lasing spectrum under an RT-CW condi-
tion with a bias current of 2/}, where single-mode operation
was obtained with an SMSR of 44 dB, and a wide stopband
width of 9 nm, which well agrees with the calculated index-
coupling coefficient of 360 cm~!, was confirmed.

Figure 10 shows the current-light output (I-L) character-
istic of the thin OCL device with five-QW wirelike active
regions and Locp, = 40 nm. Again, both facets were simply
cleaved and no facet coating was applied. Under an RT-
CW condition, a threshold current (/i) of 3.0 mA and high
differential quantum efficiency from the front facet (#qr) of
44% were obtained with a DFB section length of 135 um
and stripe width of 2.5 um. The threshold current density
normalized by the area of the contact window (135 um X
2.5 um) was 889 A/cm?. Since the number of QWs was
increased from 2 to 5 for high-speed modulation, the threshold
current was 3 times that in Fig. 8 and our previous report [17].

Figure 11 shows the lasing spectrum under an RT-CW
condition at a bias current of 2[y, where single-mode
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operation was obtained with an SMSR of 49 dB. Although
the stopband was not clearly observed, the index-coupling
coefficient of the grating was estimated from the cross
sectional structure to be approximately 400 cm~!, which
corresponds to a stopband width of 10 nm.

Dynamic characteristics were measured from the relative
intensity noise and the small-signal modulation response.
Figure 12 shows the relaxation oscillation frequency f; depen-
dence on the square root of the bias current above the threshold
(I - In)'/?, where f; was measured from the peak frequency
of the intensity-noise spectrum [24] to avoid the effect of the
resistance—capacitance roll-off. The gradients of the plots were
about 1.3 and 3.0 GHz/mA!/? for the thick and thin devices,
respectively. The latter value is very high among those reported
for GalnAsP materials and is comparable to that of state-of-art
AlGalnAs QW lasers [5].

The small-signal modulation response was measured for
various bias currents. Figure 13(a) shows the results for a
thick-OCL device with Locr = 120 nm, where the 3 dB cut-
off frequency ( f3gg) was limited to around 2 GHz even though
the injection current was increased to 10 times the threshold.
It is believed that the following three points are major causes
of limiting direct modulation bandwidth of semiconductor
lasers, i.e. relaxation oscillation frequency f; , parasitic RC,
and carrier transport effect. As can be seen in Fig. 12, f; of
the thick OCL device was around 4 GHz at a bias current of

current | 10GEE 10.3125
Ext.ratiof?y 5.7 05 total wns 1.004 k nargin 20 &
Jdittar RMSOTY 4 047 n= failed smnls 11 mask hits 11
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tule;l mess
56 8 et
—

Fig. 14. Eye diagrams under high-speed modulation. (a) 10 Gb/s, I = 10 mA,
and Vpp = 0.53 V. (b) 25 Gb/s, I = 30 mA, and Vpp = 2.3 V.

I, = 10mA, hence the corresponding f3gg should be
around 1.55 f; = 6 GHz if there is no other restrictions.
But observed fzgg was only 2 GHz. Since f3gg of over
15 GHz.was obtained for the thin OCL device having the
same mesa-stripe geometry and the same electrode pad size
with those of the thick OCL device, parasitic RC can’t be
the reason for poor modulation bandwidth of the DR laser
with thick OCL. This measured bandwidth well agrees with
that estimated for Lpocz = 120 nm and the wirelike active
region width of 80 nm as shown in Fig. 4. On the other
hand, in the thin-OCL device with Loc, = 40 nm, f34B
increased with bias current and reached 15 GHz at bias current
of 28 mA. Since these small-signal modulation characteristics
agree rather well with the calculated results shown in Fig. 4,
the 3 dB bandwidth exceeding 20 GHz can be obtained by
reducing the OCL thickness to 30 nm from the view point
of carrier transport. However, we believe that it is possible to
realize higher modulation speed by adopting a higher doping
concentration in OCLs or an asymmetric layer structure of the
p and n OCLs to shorten the transport time of holes without
sacrificing the optical confinement factor in the active region.
For high-speed direct modulations, further investigations on
the optimal structure of the DR lasers with wirelike active
regions are important.

Finally, we carried out large-signal direct modulation exper-
iments at 10 and 25 Gbps with 23! — 1 pseudorandom bit
sequence data streams for non-return-to-zero signals. As seen
in Fig. 14(a), a very clear eye opening was obtained for
10 GbE mask test of 20% margin with bias current of only
10 mA and modulation voltage of 0.53 Vpp,. Figure 14(b)
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shows the eye diagram for 25 Gbps modulation, where the
bias current was kept at 30 mA. In comparison with 10 Gps
modulation, a clear eye opening was not obtained and a peak-
to-peak modulation voltage of 2.3 Vp, was required to obtain
an extinction ration of about 5 dB.

V. CONCLUSION

We revealed that carrier transport is a dominant limiting
factor of the direct modulation speed of DFB and DR lasers
with wirelike active regions and experimentally confirmed this
finding using direct modulation characteristics of two DR
lasers with different layer structures. A theoretical calculation
showed that the carrier transport time in the OCL beneath
the embedded InP layer strongly affects the modulation band-
width, and indicates the necessity of thinner OCL design. By
adopting thin OCLs of 40 nm and five quantum wells for
higher modulation speed, the slope of the relaxation oscillation
frequency f; of 3.0 GHz/mA®%> was obtained owing to the
low-threshold current characteristics of DR lasers, and 3 dB
bandwidth over 15 GHz was achieved with relatively low bias
current of 28 mA. Furthermore, a mask test of 10 GbE with
20% margin was passed with bias current as low as 10 mA
and modulation voltage of 0.53 V,_,,. These results show
that the DR laser with wirelike active regions is promising
as a light source for access network applications and optical
interconnections.
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