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We investigated the waveguide loss of lateral-current-injection (LCI) type GaInAsP/InP membrane Fabry–Pérot lasers by adopting low-doped
p-InP cap and side cladding layers. An internal quantum efficiency of 75% was obtained, and waveguide loss was reduced to 22 cm%1, which was
approximately half of that in our previous report. Further, a differential quantum efficiency higher than 50% was obtained for devices with cavity
length less than 400µm. These results indicate the possibility of sub-mA threshold current and high-efficiency operation of LCI type membrane
distributed feedback and distributed-reflector lasers with active region length less than 100µm. © 2017 The Japan Society of Applied Physics

With the scaling of silicon CMOS technology, the
performance of LSIs has improved according to
the scaling rule.1) Recently, it was predicted that

the progress of LSIs will soon confront limitations due to
serious problems such as signal delay and Joule heating in the
global wiring layers. In order to overcome these problems,
the replacement of electrical global wiring with on-chip
optical interconnections has been investigated extensively.2–5)

The light source of on-chip interconnections should have
a small footprint, ultralow power consumption, and high-
efficiency operation. Several research groups investigated
ultralow-power-consumption semiconductor lasers such as
vertical-cavity surface-emitting lasers (VCSEL),6,7) microdisk
lasers,8,9) and photonic crystal lasers.10–12) The available
energy of the semiconductor laser was estimated to be less
than 100 fJ=bit,4) which implies that power consumption
should be less than 1mW at 10Gbps operation in the on-chip
optical interconnection system. In addition, we estimated that
the light output should be greater than 0.16mW at 10Gbps
operation under the assumption of a link budget of 5 dB.13)

In order to realize such optical interconnects, we have
proposed semiconductor membrane lasers for low power con-
sumption and high-efficiency operation,14) and we demon-
strated the low-threshold operation of a lateral-current-injec-
tion (LCI) type membrane distributed feedback (DFB) laser
under room-temperature continuous-wave optical pump-
ing.15) The membrane structure, which consists of a thin
(150–250 nm) semiconductor core layer sandwiched between
low-refractive-index dielectric cladding layers, provides
strong optical confinement in the semiconductor core layer
and enables the development of small-footprint devices.16)

This strong optical confinement leads to enhanced modal
gain and low-threshold-current operation compared with
conventional lasers.17) Moreover, this structure has a large
index-coupling coefficient of the grating, and we achieved
a low-threshold-current DFB laser with a short cavity length
of 50 µm.18) For high-efficiency operation, we adopted a
distributed-reflector (DR) structure that consists of a DFB
region with a distributed Bragg reflector at its rear side. Even
membrane DR lasers with low-threshold and high-efficiency
operation as well as asymmetric light output have been
demonstrated,19) but the light output power was insufficient
to realize the desired system of optical interconnects owing to
a high waveguide loss of 42 cm−1.20)

In this study, we investigated the waveguide loss of
membrane Fabry–Pérot (FP) lasers consisting of p-type InP
layers with different doping concentrations. From the cavity
length dependence of those devices, we evaluated the p-InP
doping-concentration dependence of not only the waveguide
loss but also the internal quantum efficiency.

Figure 1(a) shows schematic cross sections of an LCI-FP
laser with a core thickness of 400 nm on a semi-insulating
(SI) InP substrate21) (on the left), a membrane FP laser with
a core thickness of 220 nm including a p-InP cap layer
(NA,cap = 4 × 1018 cm−3) bonded on a Si substrate20) (on the
center), and a membrane FP laser with a core thickness of
270 nm including a p-InP cap layer (NA,cap = 3 × 1017 cm−3)
bonded on a Si substrate (on the right). Since surface
recombination speed of GaInAsP optical confinement layer
(OCL, indicated by yellow) is much larger than that of InP
and the hole mobility is much lower than that of the electron
mobility in InP, p-InP cap layer was grown on the top
GaInAsP OCL so as to suppress the surface recombination
and improve an internal quantum efficiency. Figure 1(b)
shows mode profiles corresponding to these lasers based on
the fabricated devices. In the case of the LCI laser on the SI-
InP substrate, the mode field is pulled to the SI-InP substrate
owing to the low refractive-index difference between the core
layer and SI-InP substrate. On the other hand, the mode field
of the membrane lasers spreads along the horizontal direction
and is strongly confined to the active layer because of the
high-index-contrast structure. Table I lists material absorp-
tion coefficients for the estimation of waveguide losses of
these lasers. The doping concentrations of the p-InP and
n-InP side cladding layers were derived from secondary ion
mass spectrometry measurement. In this work, the absorption
coefficients of Ga0.22In0.78As0.81P0.19 (well), p-InP (NA = 2 ×
1018 cm−3), p-InP (NA = 5 × 1017 cm−3), p-InP (NA = 3 ×
1017 cm−3), and n-InP (ND = 2 × 1018 cm−3) were calculated
to be 100, 40, 10, 6, and 2 cm−1, respectively.

Figure 2 shows the estimated waveguide losses of these
lasers and compositions. The waveguide losses were calcu-
lated by integrating the product of material loss and optical
mode profile. In the case of the LCI laser on the SI-InP
substrate, the waveguide loss was estimated to be 5.0 cm−1,
while an experimental value of 5.1 cm−1 had been reported.21)

On the other hand, the waveguide loss of the membrane laser
with a high-doped p-InP cap layer (NA,cap = 4 × 1018 cm−3)
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was estimated to be 24 cm−1 because of the higher mode field
in the p-InP cap and side cladding layers, while an experi-
mental waveguide loss of 42 cm−1 was reported.20) This large
difference between the theoretical and experimental values
is probably attributed to the scattering loss caused by the
roughness arising from the photolithography process of

the mesa stripe and regrowth process by organometallic
vapor phase epitaxy (OMVPE). Because the electric field is
strongly confined into the thin semiconductor core layer, the
roughness causes a large scattering loss. The waveguide loss
of the membrane lasers was estimated to be much higher than
that of the LCI laser on the SI-InP substrate because of the
higher optical absorption not only in the active layer due to
strong optical confinement, but also in the p-InP cap and side
cladding layers due to strong leak from the active layer, as
shown in Fig. 1(b). Thus, the adoption of a low-doped p-InP
cap layer is effective for waveguide loss reduction without
the increase of differential resistance because the injection
current does not flow in the p-InP cap layer. The waveguide
loss could be reduced to 15 cm−1 by adopting a p-InP cap
layer with low concentration (NA,cap = 3 × 1017 cm−3). More-
over, it could be reduced to 12 cm−1 by adopting a low-doped
p-InP cap layer (NA,cap = 3 × 1017 cm−3) and p-InP side
cladding layer (NA,cap = 5 × 1017 cm−3), while the increase
of differential resistance was anticipated.

Next, we fabricated membrane FP lasers with a low-doped
p-InP cap layer (NA,cap = 3 × 1017 cm−3) and a stripe width of
0.7 µm, as shown in Fig. 1(a) (on the right). The fabrication
process was almost same as that of our previous work.20) We
also fabricated membrane FP lasers with a low-doped p-InP
cap layer (NA,cap = 3 × 1017 cm−3) and side cladding layer
(NA,cap = 5 × 1017 cm−3) and stripe width of 0.6 µm. Figure 3
shows the current–light output (I–L) and current–voltage
(I–V ) characteristics of the fabricated membrane FP lasers.
The cavity length of devices with low-doped p-InP cap and
side cladding layers was 830 µm, and that of devices with
only a low-doped p-InP cap layer was 900 µm. In order to
clarify the effect of doping concentration of the p-InP side
cladding layer, devices with longer cavity length were chosen
for comparison. In the case of the device with a low-doped
p-InP cap layer alone, a threshold current Ith of 5.6mA
(corresponding threshold current density Jth of 890A=cm2),
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Fig. 1. (Color online) (a) Schematic cross sections and (b) mode field profiles of LCI laser on SI-InP substrate (left) and LCI membrane lasers (center and
right). Five quantum-wells (5QWs) are sandwiched by GaInAsP optical confinement layers (OCLs).

Table I. Material absorption coefficients for estimation of waveguide loss.

Material
Absorption coefficient

(cm−1)

Ga0.22In0.78As0.81P0.19 (well) 100

p-InP (2 × 1018 cm−3) 40

p-InP (5 × 1017 cm−3) 10

p-InP (3 × 1017 cm−3) 6

n-InP 2
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Fig. 2. (Color online) Estimated waveguide loss with respect to
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the previous work,20) membrane laser with a low-doped p-InP cap layer, and
membrane laser with low-doped p-InP cap and side cladding layers.
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an external differential quantum efficiency from the front
facet ηd of 13%, and a differential resistance dV=dI of 28Ω
were obtained. On the other hand, in the case of the device
with low-doped p-InP cap and side cladding layers, an Ith of
4.0mA (Jth of 800A=cm2), an ηd of 13%, and a dV=dI of 38Ω
were obtained. Owing to the reduction of doping concen-
tration of the p-InP side cladding layer, improvements in both
threshold current and external differential quantum efficiency
were obtained, while the differential resistance was increased.

Figure 4 shows the measured cavity length dependence
of the inverse of the differential quantum efficiency ηd.
Assuming the facet reflectivities of both facets are equal, the
relation between cavity length and ηd is expressed as

1

�d
¼ 1

�i
1 þ �WGL

lnð1=RÞ
� �

; ð1Þ

where ηi is the internal quantum efficiency, R is the facet
reflectivity, L is the cavity length, and αWG is the waveguide
loss. From linear extrapolation using Eq. (1), we obtained an
internal quantum efficiency ηi of 75% and waveguide loss
αWG of 31 cm−1 in the case of membrane FP lasers with a
low-doped p-InP cap layer alone. Further, an internal quan-
tum efficiency ηi of 75% and a waveguide loss αWG of 22
cm−1 were obtained in the case of membrane FP lasers with

low-doped p-InP cap and side cladding layers. The ηi of 75%
is the same as that in our previous work on membrane FP
lasers.20) These high internal quantum efficiencies indicate
that the fabrication process, especially the two-step OMVPE
regrowth, has been firmly established.

As can be seen in Fig. 4, the differential quantum effi-
ciency higher than 50%, which seems to be a good value for
lasers emitting at 1.5–1.6 µm, was obtained with a cavity
length of 300–350 µm.

Figure 5 shows the dependence of waveguide loss on the
doping concentration of the p-InP cap layer. The waveguide
loss was reduced from 42 to 31 cm−1 by adopting a p-InP cap
layer with lower concentration, and it was further reduced to
22 cm−1 by adopting both p-InP cap and side cladding layers
of low concentration. However, the waveguide loss αWG of
22 cm−1 is still larger than the estimated waveguide loss of
12 cm−1 as well as that in the previous work.20) As mentioned
above, this is probably attributed to the scattering loss
strongly influenced by the roughness around the mesa stripe.

Figure 6 shows the measured (indicated by open circles)
cavity length dependence of the differential resistance, where
dashed lines represent least-squares fitting curves of experi-
mental results. Assuming the contribution of the resistance of
the p-InP side cladding layer Rp-InP is dominant in the differen-
tial resistance because it is much higher than the resistance of
the n-InP side cladding layer, the resistance of the p-InP side
cladding layer was derived using the following equation:
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Rp-InP ¼ �p-InP
W

dcoreL
; ð2Þ

where ρp-InP is the resistance of the p-InP side cladding layer,W
is the distance from the p-side electrode to the active region,
dcore is the thickness of the core layer, and L is the cavity
length. By using Eq. (2) and the measured distance from the
p-side electrode to the active region W of 3 µm, the resistance
of the p-InP side cladding region was obtained as 0.34Ω·cm
for devices with low-doped p-InP cap and side cladding layers,
while it was obtained as 0.23Ω·cm for those with only the low-
doped p-InP cap layer. Although the differential resistance
of the former devices was approximately 1.5 times that of
the latter ones, it can be reduced by shortening the distance
W between the p-side electrode and active region. Thus, the
design of membrane DFB and DR lasers for high-efficiency
operation requires not only low-doped p-InP cap and side
cladding layers, but also a short distanceW between the p-side
electrode and active region.

In conclusion, we demonstrated the waveguide loss reduc-
tion of membrane FP lasers by reducing the concentration
of p-InP cap and side cladding layers. A waveguide loss of
31 cm−1 and an internal quantum efficiency of 75% were
obtained for devices with a low-doped p-InP cap layer alone.
Further, a waveguide loss of 22 cm−1 and an internal quantum
efficiency of 75% were obtained for devices with low-doped
p-InP cap and side cladding layers. These results indicate
that the fabrication process, especially the two-step OMVPE
regrowth, is firmly established and that the moderately high-
efficiency operation of membrane DFB and DR lasers can be
obtained by shortening the distance from the p-side electrode
to the active region, while differential resistances increased on
reducing the concentration of the p-InP side cladding layer.
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