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Abstract: We analyze a new type of photonic crystal fiber which consists of the core and
cladding that distinct in topology by tuning the position of air holes in each hexagonal unit cell
where the C6v symmetry is respected. The p-d band inversion between the core and cladding
leads to topological interface modes inside the band gap, which can propagate along the fiber
with a nonzero momentum in perpendicular to the corss section of a fiber. The helical topological
interface modes possess the pseudospin-momentum locking effect inherited from the corresonding
two-dimensional photonic crystal characterized by the Z2 topology. The wave functions for the
topological interface modes are analytically studied and compared successfully to the numerical
results, enlighting a novel way to use photonic crystal fiber to transfer information.
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1. Introduction

The optical fiber system gives high data rate, low signal loss and cheap cost comparing with other
communication media such as copper wire-based systems, playing a vital role in the information
age [1–3]. In conventional optical fibers, a core with higher refractive index is covered by cladding
with lower refractive index. Because of total internal reflection, light waves can propagate in
optical fibers with low loss. The number of guided modes propagating inside optical fibers
depends on the diameter of the core, which enables us to make single-mode fibers, few-mode
fibers and multi-mode fibers [4,5]. Besides being used for communication, optical fibers are also
widely used as fiber lasers and fiber-optic sensors [6–9].

Another possible architecture is a photonic crystal fiber (PCF), which is based on the properties
of photonic crystals (PhCs) [10–13]. There are two major types of PCFs: solid core PCFs and
hollow core PCFs. The former one has a solid core surrounded by cladding with a periodic
array of holes of air (or materials with lower refractive index), where light is confined with the
mechanism similar to the conventional optical fibers, i.e., air holes reduce the effective refractive
index in the cladding region, resulting in refractive index difference between the core and cladding
made of the same material. On the other hand, in the hollow core PCF, the solid core is replaced
by a large air hole while keeping the air hole array in the cladding. Then a different mechanism
for the light confinement is at work. The PhC in the cladding is designed to have a photonic band
gap, which prevents light in the hollow core from penetrating into the cladding provided the
frequency of the light is in the frequency range of the band gap. The virtue of the latter structure
is that the guided light waves are hardly affected by the bending of fibers, since it does not rely
on the total internal reflection.

The concept of topology can be introduced to construct new PCFs. Topological states of
matter have been the subject of intense research in recent years [14–17]. Topologically nontrivial
states are featured by protected edge/interface states, which appear at the boundary between
two regions with different topological invariants, and provide robust propagating modes that are
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immune to impurity scattering. In 2008, Haldane and Raghu proposed a photonic counterpart of
the quantum Hall effect [18,19]. Because topological states in photonic systems can be achieved
at the room temperature, it inspires lots of studies and topological PhCs form an established
subfield of the PhC study now [20–22]. These studies give a new idea for constructing PCFs
based on the concept of topology. For instance, recent proposals include topological one-way
fiber of second Chern number in a three-dimensional magnetic Weyl PhC [23], PCFs using the
topological end states [24,25], and topological PCFs using the valley-Hall effect [26–28].

In the two-dimensional (2D) PhC with honeycomb structure [22], it is proposed that, the
nontrivial topology can be easily achieved by tuning the lattice constant while keeping the
distance between dielectric cylinders inside each hexagonal unit cell unchanged, or keeping
the lattice constant while tuning the internal coordinates of cylinders in the unit cell (see also
[29,30]). A pseudospin defined by orbital angular momentum in a unit cell gonverns the direction
of propagation of the topological interface modes, suggesting a method to control the direction of
propagating light waves. This scheme has already been realized experimentally and extended to
several systems [31–35] and it is found to be useful to construct topological PhCs with confined
modes carring opposite pseudospin. However, interface modes discussed and experimetally
realized so far are limited in two dimensions, with zero out-of-plane momentum kz. In order to
use these modes for constructing PCFs, it is important to investigate the properties of topological
interface modes with a nonzero out-of-plane momentum kz in a three-dimensional space.

2. Photonic crystals uniform in out-of-plane direction

In this paper, we study a PhC that has hexagonal unit cells that contain six equilateral triangular
air holes in the xy plane as shown in Fig. 1 [22,34] and uniform along the z direction. We fix the
lattice constant a0 of PhC in our PhC structure and L the side length of each equilateral triangle
in a unit cell, while tuning the distance R between center of the unit cell and the center of air
holes to control the photonics topology.

Fig. 1. Photonic crystal with hexagonal unit cells, which is periodic in the xy plane but
uniform along the z direction. a1 and a2 are lattice vectors and the lattice constant is a0.
Each unit cell contains six equilateral triangular air holes with side length L. These air holes
are away from the center of unit cell with a distance R. εd and εA are dielectric constant for
dielectric and air respectively.

We consider a harmonic mode of frquency ω with electric and magnetic fields in the form [36]

E(r, z, t) = E(r, z)e−iωt (1)

and
H(r, z, t) = H(r, z)e−iωt (2)
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respectively, where r is a 2D position vector. These harmonic modes in the PhC satisfy the
Maxwell equations:

∇ × E(r, z) = iωµµ0H(r, z), (3a)

∇ × H(r, z) = −iωε(r)ε0E(r, z), (3b)

∇ · ε(r)ε0E(r, z) = 0, (3c)

∇ · H(r, z) = 0, (3d)

where µ0, ε0, µ, and ε(r) are the vacuum magnetic permeability, the vacuum dielectric constant,
relative permeability, and relative dielectric constant, respectively. We assume µ to be unity
without position dependence throughout the paper. On the other hand, ε(r) has position
dependence: εd at the dielectric and εA at the air holes. Reflecting our structure, ε(r) only
depends on x and y without z dependence.

For fibers with air holes arranged in honeycomb lattice, TE-like modes with dominant in-plane
electric field in the PhC are available. Because ε(r) is independent of z, the dominant in-plane
components of electric field takes the form

E(r, z) = [exEx(x, y) + eyEy(x, y)]Z(z), (4)

where ex/ey is the unit vector in x/y direction. For simplicity, we neglect the small Ez component
in the following analytic derivation.

From the Maxwell Eqs. (3), we can derive the following master equation for E(r)

1
ε(r)∇ × ∇ × E(r) = ω2

c2 E(r), (5)

where c = 1/√µ0ε0 is the speed of light in cacuum. Substituting Eq. (4) into the master Eq. (5),
we can separate Z(z) as

d2Z
dz2 + k2

z Z = 0, (6)

and the solution Z(z) = eikzz travels in the positive z direction. The xy-dependent part of these
modes are Ex(x, y) and Ey(x, y), which satisfy

1
ε(r)

∂

∂y
(
∂Ey

∂x
−
∂Ex
∂y

) + (
k2

z
ε(r) −

ω2

c2 )Ex = 0, (7a)

1
ε(r)

∂

∂x
(
∂Ex
∂y

−
∂Ey

∂x
) + (

k2
z

ε(r) −
ω2

c2 )Ey = 0. (7b)

It can be derived from Eq. (3a) that the in-plane magnetic field Hx is proportional to ∂zEy = ikzEy
and Hy is proportional to ∂zEx = ikzEx. Therefore, for kz = 0, only the z component of magnetic
field H(r, z) is nonzero, and the modes propagate inside the xy plane. On the contrary, here we
need to consider modes that can propagate along the z direction, which means kz ≠ 0. In this
case, the magnetic field H(r, z) has three nonzero components.

We can numerically calculate the frequency band structure of the PhC described in Fig. 1
using COMSOL [37]. In our calculation, εd = 11.7, εA = 1, a0 = 0.8µm, and L = 0.3a0 are
used, unless otherwise specified. These parameters are taken from previous experimental works
on silicon-based topological PhC. As will be shown later, the center of topological bandgap
and bandgap are 152 THz and 7 THz, with targeting wavelength close the telecommunication
band when the finite out-of-plane momentum is taken into account. Therefore, the present work
provides a basic guideline for designing practical topological PCFs.
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For R = 0.93a0/3, a band gap opens with kz = 0 as shown in Fig. 2(a), where d modes are
above the band gap and p modes are below the band gap with d and p modes shown in Fig. 2(c).
The frequency band structure for kz = 0.1 × 2π/a0 is shown in Fig. 2(b). Even though a nonzero
kz is considered here and all three components of the mangetic field are finite, we find that the z
component of the magnetic field can still be classified as p or d modes around the band gap at the
Γ point with distribution of d and p modes very similar to those for kz = 0. It is found that the
nonzero kz shifts slightly the frequency band structure to a higher frequency.

Fig. 2. (a) Frequency band structure for R = 0.93a0/3 and kz = 0. A band gap from
0.3953c/a0 to 0.4137c/a0 opens with d modes above the band gap and p modes below the
band gap. (b) Frequency band structure for R = 0.93a0/3 and kz = 0.1 × 2π/a0, where the
band gap is from 0.3970c/a0 to 0.4156c/a0. (c) The z component of magnetic field Hz of d
and p modes for kz = 0.1 × 2π/a0. εd = 11.7, εA = 1, a0 = 0.8µm, and L = 0.3a0 are used
in all calculations, unless otherwise specified.

On the contrary, for R = 1.05a0/3, the d modes are below the band gap and the p modes are
above the band gap as shown in Figs. 3(a) and 3(b) for kz = 0 and kz = 0.1 × 2π/a0 respectively.
For kz = 0, the band gaps in Figs. 2(a) and 3(a) overlap with each other, while the band gaps
in Figs. 2(b) and 3(b) overlap with each other for kz = 0.1 × 2π/a0. Even R is different for the
two structures, the degenerate p and d modes exhibit basically the same distributions, as seen in
Figs. 2(c) and 3(c). As in the case of kz = 0, this p-d band inversion for nonzero kz indicates the
PhC with R>a0/3 is topologically distinct from that with R<a0/3 [22].

Fig. 3. (a) Frequency band structure for R = 1.05a0/3 and kz = 0. A band gap from
0.3943c/a0 to 0.4133c/a0 opens with p modes above the band gap and d modes below the
band gap. (b) Frequency band structure for R = 1.05a0/3 and kz = 0.1 × 2π/a0, where the
band gap is from 0.3960c/a0 to 0.4152c/a0. (c) The z component of magnetic field Hz of p
and d modes for kz = 0.1 × 2π/a0.
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The p and d modes shown in Figs. 2(c) and 3(c) can be recombined into p± and d±, where
p± = px ± ipy and d± = dx2+y2 ± id2xy. As shown in Fig. 4, states p± ∼ e±iθ and d± ∼ e±i2θ

with azimuthal θ measured from the positive x-axis shown Fig. 1 carry quasi orbital angular
momentum (OAM) ±1 and ±2 respectively, indicated by 2π and 4π phase windings in arg(Hz).
The modes p+ and d+ form the pseudospin-up sector, while p− and d− form the pseudospin-down
sector.

Fig. 4. Phase of Hz, arg(Hz), for p± and d± with azimuthal θ measured from the positive
x-axis shown in Fig. 1. The modes p± and d± carry quasi orbital angular momentum (OAM)
±1 and ±2 respectively, presenting as 2π and 4π phase winding in arg(Hz) in the hexagonal
unit cell. The modes p+ and d+ (p− and d−) form the pseudospin-up (pseudospin-down)
sector.

For kz = 0, p+ (d+) and p− (d−) are related by the time-reversal symmetry T . This relation is
broken in the case kz ≠ 0, where the time-reversal partner for p+ with eikzz is p− with e−ikzz. We
can see that the master Eq. (5) also satisfies the mirror symmetry M with respect to the xy plane,
which changes kz to −kz in addition to the time-reversal symmetry. Reflecting the fact that both
eikzz and e−ikzz are solutions of Eq. (6), p− with eikzz and e−ikzz are different only in the direction of
propagation in the z component. Therefore, in the case kz ≠ 0, p+ (d+) and p− (d−) with eikzz are
still degenerate and related by symmetry TM.

In Figs. 5(a) and 5(b), we show the frequency dispersions up to larger kz for the modes at the
band edges where a parabolic shape is clearly observed, which is consistent with Eq. (7) taking
the dielectric constant as an averaged one. As can be seen in Eq. (7), the wavefunctions are
separable into the direction of fiber axis and the transverse directions with the former described
by a plane wave, and the parabolic dispersions in Figs. 5(a) and 5(b) corresponds to a group
velocity proportional to kz along the fiber axis. Therefore, it is clear that the photonics topology
induced by the band inversion of p − d modes at Γ point of the BZ in the transverse directions
remains essentially the same as that addressed in 2D systems, and the ring-cavity modes in 2D
case can be transplanted to fiber systems. Specifically, the ring-cavity modes with global OAM
and pseudospin are similar to the pure 2D case studied in Refs. [38] and [39] in the transverse
directions. In what follows, to be comprehensive, we reformulate the physics in the transverse
directions and proceed to analyze in detail the wavefunctions.
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Fig. 5. (a) Dispersion relation referring to the band edges at the Γ point in the transverse
directions for R = 0.93a0/3. (b) Same as (a) but for R = 1.05a0/3. The parabolic dispersions
give the group velocity proportional to kz along the z axis.

3. Topological interface modes carrying finite out-of-plane momentum

Now we consider a PCF whose cross-section is shown schematically in Fig. 6(a), where a
topological PhC with the parameters used in Fig. 3(a) is surrounded by a trivial PhC with
the parameters used in Fig. 2(a). With finite out-of-plane momentum, there will be several
topological interface modes, travelling along the PCF with opposite rotation direction depending
on pseudospin, as shown in the schematic diagram Fig. 6(b).

For the sake of simplicity, we use a hexagonal shape of fiber with hexagonal core in our
calculation, where the side length of the core is 12a0 and the side length of the fiber is 18a0.
Inside the overlapped band gap, there are couples of interface modes confined at the interface
between the topological and trivial regions in real space, as shown in Fig. 7, where two interface
modes are picked to show the field strength |Hz |

2.
The confined interface modes can be captured by the k · p Hamiltonian with the basis set

[p+ d+ p− d−] [22,38]:

Hk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M + Bk̂2 Ak̂+ Ck̂2
− 0

A∗k̂− −M − Bk̂2 0 Ck̂2
+

Ck̂2
+ 0 M + Bk̂2 Ak̂−

0 Ck̂2
− A∗k̂+ −M − Bk̂2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (8)

where k̂± = k̂x ± ik̂y and k̂2 = k̂2
x + k̂2

y , which describes the band dispersion near the band gap.
Since the Dirac mass term M determines the topology in this model, the topological PCFs can be
treated by considering the position dependence of M [40,41]. In Eq. (8), the off-diagonal block

HCP =

⎡⎢⎢⎢⎢⎣
Ck̂2

− 0

0 Ck̂2
+

⎤⎥⎥⎥⎥⎦ (9)

connects the pseudospin-up and -down sectors. By neglecting this term, the diagonal blocks
corresponding to the opposite pseudospins are decoupled, and we can consider these block
separately [33].
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Fig. 6. (a) Cross-section of photonic crystal fiber (PCF), where a topological photonic
crystal forms the core surrounded by a trivial photonic crystal as the cladding. (b) Schematic
diagram of topological interface modes in PCF, where propogation direction depends on
pseudospin.

Fig. 7. (a) Spectrum of the PCF structure in Fig. 6(a) calculated by COMSOL. There are
several pairs of interface modes |l,±⟩ related to each other by symmetry TM. The band
edges around the Γ point of Fig. 3(b) for bulk systems are denoted by black lines. (b)-(c)
|Hz |2 of interface modes |0,+⟩ and |0,−⟩ respectively, where topological photonic crystal is
inside the white lines.
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In order to analyze the k · p Hamiltonian for a topological PCF with the cross-section shown in
Fig. 6(a), it is convenient to consider the polar coordinate

k̂x = cosϕk̂r − sinϕk̂φ , (10a)

k̂y = sinϕk̂r + cosϕk̂φ , (10b)
where the position of unit cell center is given by r = (r, ϕ) with r the distance measured from the
center of fiber and ϕ the associated azimuthal angle measured from the positive x-axis shown in
Fig. 1. In the polar coordinate, k̂r = −i∂r and k̂φ = (1/r)(−i∂φ), and

k̂±=e±iφ[−i∂r ± i(1/r)(−i∂φ)]. (11)

The block corresponding to pseudospin up, i.e., the 2 × 2 block spanned by [p+ d+], can be
written as H+ = H′

+ + H′′
+ [38,39], where

H′
+=

⎡⎢⎢⎢⎢⎣
M Aeiφ k̂r

A∗e−iφ k̂r −M

⎤⎥⎥⎥⎥⎦ , H+=
⎡⎢⎢⎢⎢⎣

B(k̂2
r + k̂2

φ − 1
r ∂r) iAeiφ k̂φ

−iA∗e−iφ k̂φ B(k̂2
r + k̂2

φ − 1
r ∂r)

⎤⎥⎥⎥⎥⎦ . (12)

We derive the eigenvalue by treating H′
+ as the unperturbed Hamiltonian, and H′′

+ as the
perturbation. At the interface between the topological region (M>0) and trivial region (M<0),
H′
+ hosts the zero-energy eigenstate [38,39]

|+⟩ =
1
√

2
[p+ d+]

⎡⎢⎢⎢⎢⎣
eiφ

1

⎤⎥⎥⎥⎥⎦ F(r), (13)

where F(r) is the r-dependent Jackiw-Rebbi soliton solution. (As the zeroth order approximation,
ϕ dependence of M is neglected.) [42] In the state |+⟩, the perturbation Hamiltonian H+ can be
written as [38,39]

⟨+|H+ |+⟩

=
1
2

∫ ∞

0
dr

[︂
e−iφ 1

]︂
F(r)

⎡⎢⎢⎢⎢⎣
B(k̂2

r + k̂2
φ − 1

r ∂r) iAeiφ k̂φ
−iA∗e−iφ k̂φ −B(k̂2

r + k̂2
φ − 1

r ∂r)

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

eiφ

1

⎤⎥⎥⎥⎥⎦ F(r)

≈
1
2
(

∫ ∞

0
dr |A|F(r)2)[k̂φ + e−iφ k̂φeiφ]

=
1

2r0
(

∫ ∞

0
dr |A|F(r)2)[−2i∂φ + 1] = ℏω0[−2i∂φ + 1],

(14)

where ℏω0 = (
∫ ∞

0 dr |A|(r)F(r)2)/2r0 is a small value for a system with large radius and we
neglect k̂2

φ since it is much smaller than k̂2
r and 1

r ∂r at the interface. Therefore, the eigenvalue
equation of H+ in the basis |+⟩ is

ℏω0[−2i∂φ + 1]ψ(ϕ) = ℏωψ(ϕ). (15)

It is clear that the eigen solutions is given by ψl(ϕ) = eilφ with corresponding eigenvalues
ωl = (2l + 1)ω0. Therefore, the eigenstates of H+ are [38,39]

|l,+⟩ =
eilφ
√

2
[p+ d+]

⎡⎢⎢⎢⎢⎣
eiφ

1

⎤⎥⎥⎥⎥⎦ F(r) (16)

with eigenenergy(eigenfrequency) proportional to 2l + 1, where l is an integer referring to the
global OAM of the cavity. Similarly, for the pseudospin-down block spanned by [p− d−], the



Research Article Vol. 31, No. 16 / 31 Jul 2023 / Optics Express 27014

topological interface modes are given by

|−l,−⟩ =
e−ilφ
√

2
[p− d−]

⎡⎢⎢⎢⎢⎣
e−iφ

1

⎤⎥⎥⎥⎥⎦ F(r). (17)

In addition to the global OAM, the modes p+ (d+) provides local OAM of 1 (2). Therefore, the
total OAM L of |l,+⟩ is L = l + 2 including the eiφ term in Eq. (13). Note that the nondegenerate
modes inside the band gap correspond to L = 0 and L = ±3 in Fig. 7(a), which can be explained
by coupling matrix (9) [38]. Since the fiber conserves inversion symmetry with respect to the
center of the xy plane, the states with odd (even) L have odd (even) parity with respect to the
inversion symmetry about the fiber center.

The phase of Hz for mode |0,+⟩ is shown in Fig. 8(a), where the counterclockwise evolution
of phase inside of the unit cells indicates an up pseudospin. To check the phase distribution in
mode |0,+⟩, we show close up views of the several parts in the outermost layer of topological
hexagonal unit cells in Fig. 8(b). Starting with the hexagon 1, we look at the section indicated by
the triangle. The change of color is observed during the rotation of the section with respect to the
fiber center. Its color changes from magenta to yellow as it rotates from the hexagon 1 to the
hexagon 2. In the hexagon 2, we look at the section denoted by the triangle since it acquires
π/3 phase in the rotation. As the section goes through a 2π rotation from the hexagon 1 to the
hexagon 6, we can see that the color changes by two loops in the counterclockwise order of the
color disk, as presented in the color change of arrows. Namely, we observe a 4π change of phase
when one goes a round along the azimuthal angle couterclockwise consistent with a total OAM
L = 2, corresponding to l = 0 with pseudospin up.

Fig. 8. (a) Phase of Hz for mode |0,+⟩, where the opacity of color is proportional to |Hz |.
(b) Distribution of the phase at the outmost layer of topological hexagonal unit cells as
indicated by the hexagonal ring in (a). Six hexagons are taken to check the phase in the
triangular sections. There is a 4π phase change for a rotation as indicated by the color change
of arrows. The out-of-plane momentum is kz = 0.1 × 2π/a0.

The same analysis can be applied to mode |−1,+⟩ shown in Fig. 9(a). In this case the color
changes by one loop in the counterclockwise order of the color disk when one goes a round along
the azimuthal angle. This indicates a 2π change of phase corresponding to total OAM L = 1, and
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l = −1. Phases of Hz for some other topological interface modes with pseudospin up are shown
in Fig. 10.

Fig. 9. (a) Phase of Hz for mode |−1,+⟩, where the opacity of color is proportional to
|Hz |. (b) Distribution of the phase at the outmost layer of topological hexagonal unit cells
as indicated by the hexagonal ring in (a). Six hexagons are taken to check the phase in
the triangular sections. There is a 2π phase change for a rotation as indicated by the color
change of arrows. The out-of-plane momentum is kz = 0.1 × 2π/a0.

Because of positive kz, these topological interface modes have Poynting vectors S = Re[E ×

H∗]/2 pointing to positive z direction. Combining with pseudospin-momentum locking effect,
these modes can propogate along the fiber with a fixed rotation direction governed by pseudospin.
In Fig. 11, the in-plane component of Poynting vectors averaged over individual unit cells are
shown by arrows, whereas the z component is presented by color for topological interface modes.
We notice that in mode |−3,+⟩, which possesses negative total OAM in contrast to |0,+⟩, the
propagation direction of EM energy remains the same due to the pseudospin-momentum locking.

Finally, we discuss the modes inside the band gap in Fig. 7(a) where double degeneracy is
lifted by the coupling Hamiltonian HCP in Eqs. (8) and (9). The coupling energy is derived by
[38] ∫ ∞

0
rdr

∫ 2π

0
dϕ⟨l,+|

⎡⎢⎢⎢⎢⎣
Ck2

− 0

0 Ck2
+

⎤⎥⎥⎥⎥⎦ |−l,−⟩

=

∫ ∞

0
rdr

∫ 2π

0
dϕ[e−i(l+1)φF(r)Ck2

−e−i(l+1)φF(r) + e−ilφF(r)Ck2
+e−ilφF(r)].

(18)

From Eq. (18), we can see that k+ adds eiφ while k− adds e−iφ to the integrand. Therefore, the
first part of integration in Eq. (18) is nonzero for l = −2, and the second part of integration is
nonzero for l = 1, which correspond to L = 0 and L = ±3 (see Fig. 7(a)).

The wavefunction of mode |0,+⟩ for kz = 0.5 × 2π/a0 is displayed in Fig. 12, which is almost
the same as that shown in Fig. 8 for kz = 0.1 × 2π/a0. Therefore, the out-of-plane momentum
does not influence the mode assignment discussed above.
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(a)

(b)

(c)

Fig. 10. (a)-(c) Phase of Hz for modes |−3,+⟩, |2,+⟩, |3,+⟩ respectively. The out-of-plane
momentum is kz = 0.1 × 2π/a0.
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(a) (b)

(c) (d)

z component

Fig. 11. (a)-(d) Poynting vectors averaged over individual unit cells for modes |0,+⟩, |0,−⟩,
|−3,+⟩ and |3,−⟩ respectively, where the in-plane component is presented by arrow and the
z component is shown by color. The out-of-plane momentum is kz = 0.1 × 2π/a0.

Fig. 12. (a) Phase of Hz for mode |0,+⟩, where the opacity of color is proportional to
|Hz |. (b) Distribution of the phase at the outmost layer of topological hexagonal unit cells
as indicated by the hexagonal ring in (a). Six hexagons are taken to check the phase in the
triangular sections. The out-of-plane momentum is kz = 0.5 × 2π/a0, and the results are the
same as those for kz = 0.1 × 2π/a0 shown in Fig. 8.
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4. Discussions

Refs. [27] and [28] exploit the valley-Hall effect to create the topological interfacial modes, where
the Dirac-type dispersions occur at K and K ′ point. While the approach shares many common
properties with the present one, the spin-momentum locking feature in the helical topological
interfacial modes highlighted in the present work based on detailed analyses on wavefunctions
were not clarified so far, which is important for understanding the polarization-to-pseudospin and
vortex-to-OAM correspondence in light beams.

One can put the trivial PhC at the center and clad it by topological PhC, a dual structure to
the one addressed explicitly in the present work. The psudospin-momentum locking is still
available with the direction reversed, namely the pseudospin-up (-down) states exhibit clockwise
(counterclockwise) energy flow.

How light can be efficiently coupled from outside to TPC fiber constitutes an interesting future
problem. As demonstrated in the previous work [35], the converting efficiency between the
topological interfacial mode and a silicon waveguide mode can be improved significantly by
shaping the silicon waveguide in 2D PhC. Similar device structures might be developed for
fiber system by tuning the shape and/or refractive index on an input conventional fiber without
photonics topology. A laser based on topological interfacial modes in 2D PhC [38] can also
serve as a possible input.

5. Conclusion

In the present work, we have proposed a new scheme to construct topological photonic crystal
fibers where the photonics topology is induced by arrangements on the positions of air holes in
hexagonal unit cells accompanied by a p − d band inversion associated with the C6v symmetry.
While this mechanism is clear in two- dimensional systems with zero kz, here we investigate
the effect of nonzero out-of-plane kz. The degeneracy and band inversion are also found for
finite kz, where the double degeneracy is protected by the combination of time-reversal symmetry
and the mirror symmetry with respect to the cross section. In a topological photonic crystal
fiber constructed by a core of topological photonic crystal surrounded by a trivial photonic
crystal, topological interface modes with out-of-plane propagation are realized inside the band
gap specified by the speudospin defined by the local orbital angular momentum inside the unit
cell and the total orbital angular momentum with respect to the center of fiber. The topological
helical interface modes with up or down pseudospin transport energy along the fiber direction
in the counterclockwise or clockwise way respectively, manifesting the pseudospin-momentum
locking as the characteristic feature of Z2 topology.
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