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Abstract: Optical waveguide theory is essential to the development of various optical devices.
Although there are reports on the theory of optical waveguides with magneto-optical (MO) and
magnetoelectric (ME) effects, a comprehensive theoretical analysis of waveguides considering
these two effects has not yet been published. In this study, the conventional waveguide theory
is extended by considering constitutive relations that account for both MO and ME effects.
Using the extended waveguide theory, the propagation properties are also analyzed in a medium
where metamaterials and magnetic materials are arranged such that MO and ME effects can
be controlled independently. It has been confirmed that the interaction between MO and ME
effects occurs depending on the arrangement of certain metamaterials and the direction of
magnetization. This suggests a nonreciprocal polarization control that rotates the polarization in
only one direction when propagating in plane wave propagation and enhances the nonreciprocal
nature of the propagating waves in waveguide propagation.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Optical waveguide theory is an essential theoretical system for the design and development of
various optical elements used in today’s optical communications. The fundamental elements in
optical integrated circuits, such as laser sources, photodetectors, modulators, and transmission
lines, all use waveguide geometries. Without optical waveguide theory based on wave equations,
these device designs would not be possible. In general, the electric flux density D, magnetic flux
density B, electric field E, and magnetic field H can be related as follows:

⎛⎜⎝
D

B
⎞⎟⎠ = ⎛⎜⎝

ε ξ

ζ µ

⎞⎟⎠ ⎛⎜⎝
E

H
⎞⎟⎠ (1)

where ε, µ, ξ, ζ are 3 × 3 tensors. In optical waveguide theory, it is important to know how each
component of the four tensors interacts with propagating light.

Among the four tensors, the diagonal components, especially ε, µ, represent the dielectric
permittivity and magnetic permeability of the material. Optical waveguide theory considering
these components is essential for device properties analysis in any material systems, such as
compound semiconductor lasers [1–3], passive silicon photonic integrated devices [4–8] optical
wavelength filters (multi/demultiplexers) using SiO2 [9–11], and LiNbO3 optical modulators
[12–14].
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In addition, optical waveguide theory, which takes into account the off-diagonal component
of ε, is mainly used to analyze the nonreciprocal phenomena associated with MO effects. The
Faraday effect, the Cotton-Mouton effect, and the magneto-optical Kerr effect are well-known
nonreciprocal phenomena [15]. These effects are caused by the off-diagonal component of ε
being changed by the external magnetic field. Optical waveguide theory, which accounts for the
off-diagonal component of ε is essential for analyzing the properties of garnet-based optical
isolators/circulators [16] used to suppress reflected light in fiber optic communications and
waveguide-based optical isolators [17–20] that can be integrated into optical integrated circuits.

Of the four tensors in Eq. (1), the optical waveguide theory, which considers ξ and ζ is mainly
used to calculate the polarization state associated with ME effects. In the past, it was used to
analyze the propagation of circularly polarized light in chiral media [21,22]. More recently, it
has been used to analyze bi-isotropic materials such as multiferroic materials and metamaterials
when incorporated in bulk media and waveguides [23–26].

As mentioned earlier, many research groups have reported on plane wave and waveguide
propagation considering MO effects [27–29], and ME effects [30,31] (only in certain exceptional
cases for waveguide propagation). However, a systematic theory for optical waveguides that also
considers MO and ME effects has not yet been proposed and discussed. Therefore, in this study,
we extended the conventional wave equation to include the constitutive relations that account for
all four tensors ε, µ, ξ, ζ in Eq. (1), and developed a systematic optical waveguide theory.

The remainder of this study is structured as follows. First, in Section 2, constitutive relations
involving both MO and ME effects are considered, and refer to specific examples to realize
them. In Section 3, the conventional wave equation is extended by using it to derive a systematic
optical waveguide theory. In Section 4, the derived optical waveguide theory is applied to plane
wave and waveguide propagation and some typical examples are discussed (some of the results
are attributed to the previously known equations). Finally, Section 5 discusses unique optical
propagation properties in systems where both MO and ME effects are considered, with specific
analytical results for both plane wave and waveguide propagation.

It is expected that the results described in this study will be versatile in the design of optical
elements with different functional materials and very useful for the development of new wave
control elements.

2. Constitutive relations

In this section, the constitutive relations of the material are mentioned as a preliminary step to
derive the extended wave equations considering MO and ME effects. First, D and B are generally
related by the following relations.

D = εE + ξH (2)

B = ζE + µH (3)

where ε, µ, ξ and ζ are the permittivity, permeability, magnetic-to-electric coupling, and electric-
to-magnetic coupling tensors, each with 3 × 3 dimensions, respectively. In a general medium,

the electric and magnetic coupling is bidirectional and is expressed as ζ = −ξ
T

[32]. Therefore,
considering MO and ME effects, the electric and magnetic flux densities are determined in the
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following equation.
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In Eq. (4), the tensor components are as follows: ε and µ are the parameters corresponding
to the diagonal components of the permittivity and permeability tensors of the medium. For
simplicity, all these values are equal in this study, assuming that the medium in which the
electromagnetic wave propagates is isotropic. It is also assumed that the effect of frequency
dispersion in the medium is negligible. This study focuses specifically on the optical frequency
domain. Therefore, the medium does not exhibit the gyromagnetic effect, which is represented
by off-diagonal components of the permeability tensor.

a, b, and c are the parameters corresponding to the off-diagonal components of the permittivity
tensor of the medium and take values only when the medium has ferromagnetism. For example,
if the magnetization of a ferromagnetic medium is aligned in a particular direction, as shown
in Fig. 1, a, b, and c have complex values. Various isolators and circulators have been realized
by integrating ferromagnetic materials such as Ce:YIG, Fe, Co, and Ni into waveguides. These
devices are based on the principle that the off-diagonal component of the permittivity tensor
causes nonreciprocal effects [33–36].

 

Fig. 1. Three configurations of magneto-optical effect.

A − I are the components of the magnetic-to-electric coupling tensor (electric-to-magnetic
coupling tensor), which take complex values only when the medium has bi-anisotropic properties.
For example, when multiferroic materials such as Cr2O3, TbMnO3, etc. are used, the off-diagonal
components A−F have complex values. In other ways, with appropriately designed metamaterials
all components, including the diagonal components G, H, and I, can be controlled arbitrarily. For
example, Fig. 2 shows split ring resonator (SRR) and helical metamaterial arrangements yielding
each component of A − I. The direction of the incident electric field and the induced magnetic
field determines which tensor component has a value. Slow light propagation and compact
optical modulators have been realized by integrating SRR-based metamaterials into waveguides.
These take advantage of the steep refractive index dispersion or the change in refractive index
due to A − I having a value of [37,38].

For a summary of the above, see Fig. 3. For example, to create MO and ME effects
simultaneously (a − c and A − I have simultaneous values), ferromagnetic materials and
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Fig. 2. Nine orientations of the SRR and helical metamaterials with respect to the
polarization of incident light.

metamaterials can be integrated [39], as shown in Fig. 4. In this case, the mode and polarization
state of the propagating light become more complicated. However, with the extended wave
equation derived in this study, it is possible to perform these propagation analyses uniformly.

3. Extended optical waveguide theory with MO and ME effects

The constitutive relations in Eq. (4) are used to derive the extended wave equations that include
both MO and ME effects. Before describing the details, the flow of the derivation is shown in
Fig. 5.

Fig. 3. Classification of the material according to MO effect and ME effect.
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Fig. 4. (a) Bulk ferromagnetic material with metamaterials. (b) Metamaterial waveguide
with ferromagnetic layer.

Fig. 5. Flowchart of the introduction of the wave equations for MO and ME effects.

3.1. Derivation of the extended wave equations

We begin with Maxwell’s equations.

iωD = −∇ × H (5)

iωB = ∇ × E (6)



Research Article Vol. 31, No. 20 / 25 Sep 2023 / Optics Express 32022

Considering these equations in matrix form, we obtain the following equation, whereω denotes
the angular frequency.

iω
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From Eq. (4) and Eq. (7), we obtain
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For the above equation, each line is enumerated as follows

iω(εEx + aEy − cEz + GHx + AHy + DHz) = ∂zHy − ∂yHz (9a)

iω(−aEx + εEy + bEz + EHx + HHy + BHz) = −∂zHx + ∂xHz (9b)

iω(cEx − bEy + εEz + CHx + FHy + IHz) = ∂yHx − ∂xHy (9c)

iω(−GEx − EEy − CEz + µHx) = −∂zEy + ∂yEz (10a)

iω(−AEx − HEy − FEz + µHy) = ∂zEx − ∂xEz (10b)

iω(−DEx − BEy − IEz + µHz) = −∂yEx + ∂xEy (10c)

When deriving the wave equation with these equations, it is easier to deal with the assumption
of a certain fundamental mode. Therefore, in this study, the wave equations are derived for
the TM and TE modes, which are the most common in waveguide optics. The extended wave
equations for the TM and TE modes are obtained by the following procedure using Eqs. (9a)–(9c)
and (10a)–(10c).

TM mode: Eqs. (9a)–(9c) are solved for the electric field and then substitute them into
Eqs. (10a)–(10c).
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TE mode: Eqs. (10a)–(10c) are solved for the magnetic field and then substitute them into
Eqs. (9a)–(9c).

Depending on the value of each tensor component a − c and A − I, there are exceptional cases
(see Section 4 for details). For example, the TM and TE modes interact in a complex way in a
waveguide. Moreover, completely different polarization states, such as left circular polarization
(LCP) and right circular polarization (RCP), become the fundamental modes. Such cases can be
easily analyzed starting from the extended wave equations for the TM and TE modes.

3.2. Extended wave equation for TM modes

As mentioned in the previous section, we can obtain the wave equations for the TM mode by
substituting them into Eqs. (9a)–(9c) after solving Eqs. (10a)–(10c) for the electric field. For
simplicity, we assume that iγ enters a − c, the element for MO effect, and ζ enters A − I, the
element for ME effect. The extended wave equation for the TM mode, which includes both MO
and ME effects, is formulated as follows.

(︃
(∇ × ∇×) +M1 + iωζM2 +

γ2

ϵ2
M3 +

iγ
ϵ

M4 +
ωζγ

ϵ
M5

)︃ ⎛⎜⎜⎜⎜⎝
Hx

Hy

Hz

⎞⎟⎟⎟⎟⎠
= 0 (11a)

⎛⎜⎜⎜⎜⎝
Ex

Ey

Ez

⎞⎟⎟⎟⎟⎠
= Z1

−1Z2

⎛⎜⎜⎜⎜⎝
Hx

Hy
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⎞⎟⎟⎟⎟⎠
(11b)

where M1-M5 and Z1 and Z2 are all in tensor form. In particular, the coefficients of M2, M3,
M4, and M5 are ζ related to ME effect, γ2 and γ related to MO effect, and ζγ, which represents
the interaction between MO and ME effects. Thus, M2-M5 are tensors that mainly represent
these effects. Here, M1 is called the wave propagation tensor, M2 is called ME tensor, M3 is
called the second-order MO tensor, M4 is called the first-order MO tensor, M5 is called the MO
and ME tensor, Z1 and Z2 are called the impedance tensor.

In Eqs. (11a) and (11b), a situation is assumed where one of a− c and one of A− I have values.
All results are summarized for 27 types in total (3 × 9), and their forms are listed in Table 1 (see
Supplement 1 for the derivation of each tensor component). When iγ enters all elements of a − c
and ζ enters all elements of A − I, M1 to M5 and Z1, Z2 are given as follows.

M1 = −ω2εµ

(︃
1 −
γ2

ϵ2

)︃
I − 3ω2ζ2

(︃
1 −
γ2

ϵ2

)︃
I (12a)
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(︃
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)︃ ⎛⎜⎜⎜⎜⎝
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⎞⎟⎟⎟⎟⎠

(12b)

M3 = −(∇ × ∇×) (12c)
M4 = (∂x + ∂y + ∂z)(∇×) (12d)

M5 = 0 (12e)

Z1 =
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1 iγ

ϵ −
iγ
ϵ

−
iγ
ϵ 1 iγ

ϵ

iγ
ϵ −

iγ
ϵ 1

⎞⎟⎟⎟⎟⎠
(12f)

https://doi.org/10.6084/m9.figshare.23642094
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Z2 = −
1

iωε
(∇×) −

ζ

ε

⎛⎜⎜⎜⎜⎝
1 1 1

1 1 1

1 1 1

⎞⎟⎟⎟⎟⎠
(12g)

3.3. Extended wave equation for TE modes

After rewriting Eqs. (9a)–(9c) for the magnetic field as described in Section 3.1, we can obtain
the wave equation for the TE mode by substituting them into Eqs. (8a)–(8c). As in Section 3.2,

Table 1. Summary of tensor parameters for the TM mode
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if a − c, the elements for MO effect, are iγ and A − I, the elements for ME effect, are ζ , then
the extended wave equation for the TE mode, which includes both MO and ME effects, are
formulated as follows.

((∇ × ∇×) + N1 + iωζN2)

⎛⎜⎜⎜⎜⎝
Ex

Ey

Ez

⎞⎟⎟⎟⎟⎠
= 0 (13a)

⎛⎜⎜⎜⎜⎝
Hx

Hy
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= Y

⎛⎜⎜⎜⎜⎝
Ex

Ey

Ez

⎞⎟⎟⎟⎟⎠
(13b)

where N1, N2 and Y are all in tensor form. In particular, the coefficients of N2 is ζ related to ME
effect. Therefore, in this study, N1 will be referred to as the wave propagation tensor, N2 as the
ME tensor and Y as the admittance tensor.

In Eqs. (13a) and (13b), we assume a situation where one instance of a − c and one instance
of A − I have values. All results are summarized for 27 types in total (3 × 9), and their forms
in Table 2 (see Supplement 1 for the derivation of each tensor component). When iγ enters all
elements of a − c and ζ enters all elements of A − I, N1, N2 and Y are given as follows.

N1 = −ω2µε I − ω2µ

⎛⎜⎜⎜⎜⎝
0 −iγ iγ

iγ 0 −iγ

−iγ iγ 0

⎞⎟⎟⎟⎟⎠
− 3ω2ζ2I (14a)

N2 = 2(∇×) +
⎛⎜⎜⎜⎜⎝

0 ∂x + ∂y −∂x − ∂z

−∂x − ∂y 0 ∂y + ∂z

∂x + ∂z −∂y − ∂z 0

⎞⎟⎟⎟⎟⎠
(14b)

Table 2. Summary of tensor parameters for the TE mode

https://doi.org/10.6084/m9.figshare.23642094
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Y = 1
iωµ

(∇×) +
ζ

µ

⎛⎜⎜⎜⎜⎝
1 1 1

1 1 1

1 1 1

⎞⎟⎟⎟⎟⎠
(14c)

4. Study cases

In this section, the extended wave equation obtained in the previous section is applied to several
plane wave and waveguide models. In particular, the following models will be discussed in each
of the sections.

4.1 Waveguide propagation without both MO and ME effects

4.2 Plane wave propagation with only MO effect

4.3 Waveguide propagation with only MO effect

4.4 Plane wave propagation with only ME effect

4.5 Waveguide propagation with only ME effect

4.6 Plane wave propagation with both MO and ME effects

4.7 Waveguide propagation with both MO and ME effects

4.1. Waveguide propagation without both MO and ME effects

The case of light propagating in a waveguide where neither MO nor ME effects are first considered.
For simplicity, a slab waveguide (∂x = 0, ∂z = −jβ) in the TM mode (Hy = 0, Hz = 0, Ex = 0)
is assumed, and Eqs. (11a) and (11b) can be written as follows.

((∇ × ∇×) +M1)

⎛⎜⎜⎜⎜⎝
Hx

0

0

⎞⎟⎟⎟⎟⎠
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Since we can express the equation as
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⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
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2 0 0
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M1 = −ω2εµ I (16b)
Z1 = I (16c)
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1

iωε
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1
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⎞⎟⎟⎟⎟⎠
= −

1
iωε

⎛⎜⎜⎜⎜⎝
0 iβ ∂y

−iβ 0 0

−∂y 0 0

⎞⎟⎟⎟⎟⎠
(16d)



Research Article Vol. 31, No. 20 / 25 Sep 2023 / Optics Express 32029

for any of the cases (A-a) to (I-c) in Table 1, we can confirm that Eqs. (15a) and (15b) can be
attributed to the following general equations for optical waveguide.

∂y∂yHx + (ω
2εµ − β2)Hx = 0

Ez =
1

iωε
∂yHx

Using a similar procedure and assuming a slab waveguide (∂x = 0, ∂z = −iβ) in the TE mode
(Ey = 0, Ez = 0, Hx = 0), we can verify that Eqs. (13a) and (13b) can be attributed to the
following general equations for optical waveguide.

∂y∂yEx + (ω
2εµ − β2)Ex = 0 (17a)

Hz = −
1

iωµ
∂yEx (17b)

4.2. Plane wave propagation with only MO effect

It is assumed that plane waves propagate in an isotropic crystal (∂x = 0, ∂y = 0, ∂z = −iβ) and
only MO effect is considered. Eqs. (13a) and (13b) are given as follows.

((∇ × ∇×) + N1)

⎛⎜⎜⎜⎜⎝
Ex

Ey

0

⎞⎟⎟⎟⎟⎠
= 0 (18a)

⎛⎜⎜⎜⎜⎝
Hx

Hy

0

⎞⎟⎟⎟⎟⎠
= Y

⎛⎜⎜⎜⎜⎝
Ex

Ey

0

⎞⎟⎟⎟⎟⎠
(18b)

Assuming that the magnetization is aligned in the z direction (a = iγ, b = 0, c = 0), we can
write

(∇ × ∇×) =

⎛⎜⎜⎜⎜⎝
−∂y∂y − ∂z∂z ∂x∂y ∂x∂z

∂x∂y −∂x∂x − ∂z∂z ∂y∂z

∂x∂z ∂y∂z −∂x∂x − ∂y∂y

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
β2 0 0

0 β2 0

0 0 0

⎞⎟⎟⎟⎟⎠
(19a)

N1 = −ω2εµI − ω2µ

⎛⎜⎜⎜⎜⎝
0 iγ 0

−iγ 0 0

0 0 0

⎞⎟⎟⎟⎟⎠
(19b)

for each of the cases (A∼I-a) in Table 2. We substitute these into Eqs. (18a) and (18b), and obtain

⎛⎜⎝
β2 − ω2εµ −iω2µγ

iω2µγ β2 − ω2εµ

⎞⎟⎠ ⎛⎜⎝
Ex

Ey

⎞⎟⎠ = 0 (20)

Finally, by diagonalizing Eq. (20), we obtain the following equation.

⎛⎜⎝
β2 − ω2εµ + ω2µγ 0

0 β2 − ω2εµ − ω2µγ

⎞⎟⎠ ⎛⎜⎝
i
2 (Ex − iEy)

i
2 (−Ex − iEy)

⎞⎟⎠ = 0 (21)

where Ex − iEy represents RCP, and −Ex − iEy represents LCP. Thus, the fundamental modes of
propagating light are LCP and RCP modes. The propagation constants for each mode are given
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by
β± = ω

√︁
µ(ε ± γ) (22)

This leads to a nonreciprocal polarization rotation of the linearly polarized light in the crystal,
which is consistent with the theory of the Faraday effect [40,41].

4.3. Waveguide propagation with only MO effect

Under the assumption of a slab waveguide (∂x = 0, ∂z = −iβ) in the TM mode (Hy = 0, Hz =

0, Ex = 0), only MO effect is considered. Eqs. (11a) and (11b) are expressed as follows.

(︃
(∇ × ∇×) +M1 +

γ2

ϵ2
M3 +

iγ
ϵ

M4

)︃ ⎛⎜⎜⎜⎜⎝
Hx

0

0

⎞⎟⎟⎟⎟⎠
= 0 (23a)

⎛⎜⎜⎜⎜⎝
0

Ey

Ez

⎞⎟⎟⎟⎟⎠
= Z1

−1Z2

⎛⎜⎜⎜⎜⎝
Hx

0

0

⎞⎟⎟⎟⎟⎠
(23b)

Assuming that the magnetization is aligned in the x direction (a = 0, b = iγ, c = 0), we can
write

(∇ × ∇×) =

⎛⎜⎜⎜⎜⎝
−∂y∂y − ∂z∂z ∂x∂y ∂x∂z

∂x∂y −∂x∂x − ∂z∂z ∂y∂z

∂x∂z ∂y∂z −∂x∂x − ∂y∂y

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
−∂y∂y + β

2 0 0

0 β2 −iβ∂y

0 −iβ∂y −∂y∂y

⎞⎟⎟⎟⎟⎠
(24a)

M1 = −ω2εµ

(︃
1 −
γ2

ϵ2

)︃
I (24b)

M3 =

⎛⎜⎜⎜⎜⎝
0 0 0

0 ∂z∂z −∂y∂z

0 −∂y∂z ∂y∂y

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
0 0 0

0 −β2 iβ∂y

0 iβ∂y ∂y∂y

⎞⎟⎟⎟⎟⎠
(24c)

M4 = ∂x(∇×) = 0 (24d)

Z1 =

⎛⎜⎜⎜⎜⎝
1 0 0

0 1 iγ
ϵ

0 −
iγ
ϵ 1

⎞⎟⎟⎟⎟⎠
(24e)

Z2 = −
1

iωε
(∇×) = −

1
iωε

⎛⎜⎜⎜⎜⎝
0 −∂z ∂y

∂z 0 −∂x

−∂y ∂x 0

⎞⎟⎟⎟⎟⎠
= −

1
iωε

⎛⎜⎜⎜⎜⎝
0 iβ ∂y

−iβ 0 0

−∂y 0 0

⎞⎟⎟⎟⎟⎠
(24f)

for each of the cases (A∼I-b) in Table 1. These are substituted into Eqs. (23a) and (23b), and give

∂y∂yHx +

(︃
ω2εµ

(︃
1 −
γ2

ϵ2

)︃
− β2

)︃
Hx = 0 (25a)
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Ez =
1
iω

ε

ϵ2 − γ2

(︃
∂yHx +

γβ

ϵ
Hx

)︃
(25b)

These equations are consistent with the wave equation for a waveguide optical isolator using
the transverse magneto-optical Kerr effect [42–46]. Equation (25b) shows that the first-order
term of the parameter γ for MO effect is multiplied by the first-order term of the propagation
constant β. This gives the nonreciprocal propagation constant (nonreciprocal phase shifts (NRPS),
nonreciprocal loss (NRL), etc.) in the forward and backward waves.

4.4. Plane wave propagation with only ME effect

Assume that plane waves propagate in an isotropic crystal (∂x = 0, ∂y = 0, ∂z = −iβ) and only
ME effect is considered. Equations (13a) and (13b) are expressed as follows.

((∇ × ∇×) + N1 + iωζN2)

⎛⎜⎜⎜⎜⎝
Ex

Ey

0

⎞⎟⎟⎟⎟⎠
= 0 (26a)

⎛⎜⎜⎜⎜⎝
Hx

Hy

0

⎞⎟⎟⎟⎟⎠
= Y

⎛⎜⎜⎜⎜⎝
Ex

Ey

0

⎞⎟⎟⎟⎟⎠
(26b)

Assuming that the diagonal components G and H contain values (G = H = ζ ), Table 2 leads to

(∇ × ∇×) =

⎛⎜⎜⎜⎜⎝
−∂y∂y − ∂z∂z ∂x∂y ∂x∂z

∂x∂y −∂x∂x − ∂z∂z ∂y∂z

∂x∂z ∂y∂z −∂x∂x − ∂y∂y

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
β2 0 0

0 β2 0

0 0 0

⎞⎟⎟⎟⎟⎠
(27a)

N1 = −ω2εµI − ω2ζ2
⎛⎜⎜⎜⎜⎝
1 0 0

0 1 0

0 0 0

⎞⎟⎟⎟⎟⎠
(27b)

N2 = (∇×)|∂x=0 =

⎛⎜⎜⎜⎜⎝
0 −∂z ∂y

∂z 0 0

−∂y 0 0

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
0 iβ 0

−iβ 0 0

0 0 0

⎞⎟⎟⎟⎟⎠
(27c)

Substituting these into Eqs. (26a) and (26b), we obtain

⎛⎜⎝
β2 − ω2εµ − ω2ζ2 −ωβζ

ωβζ β2 − ω2εµ − ω2ζ2
⎞⎟⎠ ⎛⎜⎝

Ex

Ey

⎞⎟⎠ = 0 (28)

Finally, by diagonalizing Eq. (28), the following equation is obtained.

⎛⎜⎝
β2 − ω2εµ − ω2ζ2 − iωβζ 0

0 β2 − ω2εµ − ω2ζ2 + iωβζ
⎞⎟⎠ ⎛⎜⎝

i
2 (Ex − iEy)

i
2 (−Ex − iEy)

⎞⎟⎠ = 0 (29)

where Ex − iEy represents RCP, and −Ex − iEy represents LCP. Thus, the fundamental modes of
propagating light are LCP and RCP modes. The propagation constants for each mode are given
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by

β± =

√︂
ω2εµ + ω2ζ2 ± iωβζ (30)

This result is consistent with the equations for plane wave propagation in bulk crystals with
ME effect derived by Engheta et al. in 1992 [30,31] and Ioannidis et al. in 2010 [47].

4.5. Waveguide propagation with only ME effect

Assume a slab waveguide (∂x = 0, ∂z = −iβ) in the TM mode (Hy = 0, Hz = 0, Ex = 0) and
only ME effect is considered. Equations (11a) and (11b) are expressed as follows.

((∇ × ∇×) +M1 + iωζM2)

⎛⎜⎜⎜⎜⎝
Hx

0

0

⎞⎟⎟⎟⎟⎠
= 0 (31a)

⎛⎜⎜⎜⎜⎝
0

Ey

Ez

⎞⎟⎟⎟⎟⎠
= Z1

−1Z2

⎛⎜⎜⎜⎜⎝
Hx

0

0

⎞⎟⎟⎟⎟⎠
(31b)

Assuming that the diagonal component C contains value (C = ζ), we can write

(∇ × ∇×) =

⎛⎜⎜⎜⎜⎝
−∂y∂y − ∂z∂z ∂x∂y ∂x∂z

∂x∂y −∂x∂x − ∂z∂z ∂y∂z

∂x∂z ∂y∂z −∂x∂x − ∂y∂y

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
−∂y∂y + β

2 0 0

0 β2 −iβ∂y

0 −iβ∂y −∂y∂y

⎞⎟⎟⎟⎟⎠
(32a)

M1 = −ω2εµI − ω2ζ2
⎛⎜⎜⎜⎜⎝
1 0 0

0 0 0

0 0 0

⎞⎟⎟⎟⎟⎠
(32b)

M2 =

⎛⎜⎜⎜⎜⎝
0 ∂x 0

−∂x 0 0

0 0 0

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
0 0 0

0 0 0

0 0 0

⎞⎟⎟⎟⎟⎠
(32c)

Z1 =

⎛⎜⎜⎜⎜⎝
1 0 0

0 1 0

0 0 1

⎞⎟⎟⎟⎟⎠
(32d)

Z2 = − 1
iωε (∇×) −

ζ
ε

⎛⎜⎜⎜⎜⎝
0 0 0

0 0 0

1 0 0

⎞⎟⎟⎟⎟⎠
= − 1

iωε

⎛⎜⎜⎜⎜⎝
0 −∂z ∂y

∂z 0 −∂x

−∂y ∂x 0

⎞⎟⎟⎟⎟⎠
−

ζ
ε

⎛⎜⎜⎜⎜⎝
0 0 0

0 0 0

1 0 0

⎞⎟⎟⎟⎟⎠
= − 1

iωε

⎛⎜⎜⎜⎜⎝
0 iβ ∂y

−iβ 0 0

−∂y 0 0

⎞⎟⎟⎟⎟⎠
−

ζ
ε

⎛⎜⎜⎜⎜⎝
0 0 0

0 0 0

1 0 0

⎞⎟⎟⎟⎟⎠
= − 1

iωε

⎛⎜⎜⎜⎜⎝
0 iβ ∂y

−iβ 0 0

−∂y + iωζ 0 0

⎞⎟⎟⎟⎟⎠
(32e)
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for each of the cases (C-a∼c) in Table 1. These are substituted into Eqs. (31a) and (31b), and give

∂y∂yHx + (ω
2εµ + ω2ζ2 − β2)Hx = 0 (33a)

Ez =
1

iωε
(∂yHx − iωζHx) (33b)

In the above case, we can keep the TM mode in the waveguide, but not depending on how each
of the off-diagonal components A- F of the magnetic-to-electric coupling enters. For example,
when A and D have values, the three components of the TE mode (Ex, Hy, Hz) interact with
each other, to maintain the TE mode in the waveguide. When C and E have values, the three
components of the TM mode (Hx, Ey, Ez) interact with each other, to maintain the TM mode in
the waveguide. In contrast, when B and F have values, the three components of the TE mode and
the three components of the TM mode interfere with each other. In this case, a special situation
arises where both TM and TE modes are mixed in the waveguide.

4.6. Plane wave propagation with both MO and ME effects

Assume that plane waves propagate in an isotropic crystal (∂x = 0, ∂y = 0, ∂z = −iβ) and consider
both MO and ME effects are considered. Eqs. (13a) and (13b) are expressed as follows.

((∇ × ∇×) + N1 + iωζN2)

⎛⎜⎜⎜⎜⎝
Ex

Ey

0

⎞⎟⎟⎟⎟⎠
= 0 (34a)

⎛⎜⎜⎜⎜⎝
Hx

Hy

0

⎞⎟⎟⎟⎟⎠
= Y

⎛⎜⎜⎜⎜⎝
Ex

Ey

0

⎞⎟⎟⎟⎟⎠
(34b)

Assuming that the diagonal components G and H contain values (G = H = ζ) and the
magnetization is aligned in the z direction (a = iγ, b = 0, c = 0), Table 2 leads to

(∇ × ∇×) =

⎛⎜⎜⎜⎜⎝
−∂y∂y − ∂z∂z ∂x∂y ∂x∂z

∂x∂y −∂x∂x − ∂z∂z ∂y∂z

∂x∂z ∂y∂z −∂x∂x − ∂y∂y

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
β2 0 0

0 β2 0

0 0 0

⎞⎟⎟⎟⎟⎠
(35a)

N1 = −ω2εµI − ω2µ

⎛⎜⎜⎜⎜⎝
0 iγ 0

−iγ 0 0

0 0 0

⎞⎟⎟⎟⎟⎠
− ω2ζ2

⎛⎜⎜⎜⎜⎝
1 0 0

0 1 0

0 0 0

⎞⎟⎟⎟⎟⎠
(35b)

N2 = (∇×)|∂x=0 =

⎛⎜⎜⎜⎜⎝
0 −∂z ∂y

∂z 0 0

−∂y 0 0

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
0 iβ 0

−iβ 0 0

0 0 0

⎞⎟⎟⎟⎟⎠
(35c)

Substituting these into Eqs. (34a) and (34b), we obtain

⎛⎜⎝
β2 − ω2εµ − ω2ζ2 −ωβζ − iω2µγ

ωβζ + iω2µγ β2 − ω2εµ − ω2ζ2
⎞⎟⎠ ⎛⎜⎝

Ex

Ey

⎞⎟⎠ = 0 (36)
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Finally, by diagonalizing Eq. (36), the following equation is obtained.

⎛⎜⎝
β2 − ω2εµ − ω2ζ2 − iωβζ + ω2µγ 0

0 β2 − ω2εµ − ω2ζ2 + iωβζ − ω2µγ

⎞⎟⎠ ⎛⎜⎝
i
2 (Ex − iEy)

i
2 (−Ex − iEy)

⎞⎟⎠ = 0

(37)
where Ex − iEy represents RCP, and −Ex − iEy represents LCP. Thus, the fundamental modes of
the propagating light are LCP and RCP modes. The propagation constants for each mode are
obtained by solving the following quadratic equation.

f+(β) = β2 − iωβζ − ω2εµ − ω2ζ2 + ω2µγ = 0 (38a)

f−(β) = β2 + iωβζ − ω2εµ − ω2ζ2 − ω2µγ = 0 (38b)

Considering polarization rotation, in Section 4.2, the second term in Eq. (22) is the term
for MO effect and breaks the time-reversal symmetry. Therefore, the direction of polarization
rotation is opposite for the forward and backward waves, but the polarization rotation angle does
not change.

On the other hand, in this section, the second term in Eqs. (38) is the term for ME effect and
maintains the time-reversal symmetry. In addition, the fifth term is the term for MO effect and
breaks the time-reversal symmetry. These two effects can change not only the direction of the
polarization rotation but also the polarization rotation angle for the forward and backward waves.
A detailed discussion of these results is given in Section 5.1.

4.7. Waveguide propagation with both MO and ME effects

Assume a slab waveguide (∂x = 0, ∂z = −iβ) in the TM mode (Hy = 0, Hz = 0, Ex = 0) and
consider both MO and ME effects. Equations (11a) and (11b) are expressed as follows.

(︂
(∇ × ∇×) +M1 + iωζM2 +

γ2

ϵ2 M3 +
iγ
ϵ M4 +

ωζγ
ϵ M5

)︂ ⎛⎜⎜⎜⎜⎝
Hx

0

0

⎞⎟⎟⎟⎟⎠
= 0 (39a)

⎛⎜⎜⎜⎜⎝
0

Ey

Ez

⎞⎟⎟⎟⎟⎠
= Z1

−1Z2

⎛⎜⎜⎜⎜⎝
Hx

0

0

⎞⎟⎟⎟⎟⎠
(39b)

Assuming that the diagonal component C contains value (C = ζ) and the magnetization is
aligned in the x direction (a = 0, b = iγ, c = 0), Table 1 (C-b) leads to

(∇ × ∇×) =

⎛⎜⎜⎜⎜⎝
−∂y∂y − ∂z∂z ∂x∂y ∂x∂z

∂x∂y −∂x∂x − ∂z∂z ∂y∂z

∂x∂z ∂y∂z −∂x∂x − ∂y∂y

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
−∂y∂y + β

2 0 0

0 β2 −iβ∂y

0 −iβ∂y −∂y∂y

⎞⎟⎟⎟⎟⎠
(40a)

M1 = −ω2εµ
(︂
1 −

γ2

ϵ2

)︂
I − ω2ζ2

⎛⎜⎜⎜⎜⎝
1 0 0

0 0 0

0 0 0

⎞⎟⎟⎟⎟⎠
(40b)
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M2 =

⎛⎜⎜⎜⎜⎝
0 ∂x 0

−∂x 0 0

0 0 0

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
0 0 0

0 0 0

0 0 0

⎞⎟⎟⎟⎟⎠
(40c)

M3 =

⎛⎜⎜⎜⎜⎝
0 0 0

0 ∂z∂z −∂y∂z

0 −∂y∂z ∂y∂y

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
0 0 0

0 −β2 iβ∂y

0 iβ∂y ∂y∂y

⎞⎟⎟⎟⎟⎠
(40d)

M4 = −∂x(∇×) = 0 (40e)

M5 =

⎛⎜⎜⎜⎜⎝
−2∂z 0 ∂x

0 0 0

∂x 0 0

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
2iβ 0 0

0 0 0

0 0 0

⎞⎟⎟⎟⎟⎠
(40f)

Z1 =

⎛⎜⎜⎜⎜⎝
1 0 0

0 1 iγ
ϵ

0 −
iγ
ϵ 1

⎞⎟⎟⎟⎟⎠
(40g)

Z2 = − 1
iωε (∇×) −

ζ
ε

⎛⎜⎜⎜⎜⎝
0 0 0

0 0 0

1 0 0

⎞⎟⎟⎟⎟⎠
= − 1

iωε

⎛⎜⎜⎜⎜⎝
0 −∂z ∂y

∂z 0 −∂x

−∂y ∂x 0

⎞⎟⎟⎟⎟⎠
−

ζ
ε

⎛⎜⎜⎜⎜⎝
0 0 0

0 0 0

1 0 0

⎞⎟⎟⎟⎟⎠
= − 1

iωε

⎛⎜⎜⎜⎜⎝
0 iβ ∂y

−iβ 0 0

−∂y 0 0

⎞⎟⎟⎟⎟⎠
−

ζ
ε

⎛⎜⎜⎜⎜⎝
0 0 0

0 0 0

1 0 0

⎞⎟⎟⎟⎟⎠
= − 1

iωε

⎛⎜⎜⎜⎜⎝
0 iβ ∂y

−iβ 0 0

−∂y + iωζ 0 0

⎞⎟⎟⎟⎟⎠
(40h)

Substituting these into Eqs. (39a) and (39b), we obtain

∂y∂yHx +

(︃
ω2εµ

(︃
1 −
γ2

ϵ2

)︃
+ ω2ζ2 − β2 − 2iβ

ωζγ

ϵ

)︃
Hx = 0 (41a)

Ez =
1
iω

ε

ϵ2 − γ2

(︃
γβ

ε
Hx + ∂yHx − iωζHx

)︃
(41b)

Equations (41) shows that the first-order term of the parameter γ for MO effect is multiplied
by the first-order term of the propagation constant β. It also shows that the parameter ζ related
to ME effect functions in such a way to increase or decrease that effect. This allows for the
amplification of nonreciprocal effects (e.g., NRPS, NRS, etc.) within waveguides.

Note that the interaction term ζγ of MO and ME effects, as in Eqs. (41), occurs only in certain
cases. For example, if we consider a waveguide with metamaterial structure (Fig. 2) and a
ferromagnetic medium (Fig. 1) in which MO and ME effects can be controlled independently,
the interaction terms of MO and ME effects appear when the magnetization direction and the
direction of the magnetic moment of the SRR coincide (b-C, b-E).

In waveguide propagation considering both MO and ME effects, as described in Section 4.5, it
may be difficult to maintain TM and TE modes in the waveguide depending on the value of each
element of the off-diagonal component A- F of the magneto-electric coupling tensor. Specifically,
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when A and D have values, the TE mode is maintained, and when C and E have values, the TM
mode is maintained. In contrast, when B and F have values, both TE and TM modes interfere
with each other in the waveguide in a complicated manner.

Finally, Table 3 summarizes the wave equations derived in Sections 4.1 through 4.7 for each
case.

Table 3. Wave equations for MO effect and ME effect

5. Analysis of cases with both MO and ME effects

In this section, a new model that accounts for both MO and ME effects is applied to plane wave
and waveguide propagation to discuss novel phenomena and device properties.

5.1. Nonreciprocal polarization conversion

Based on the theory derived in Section 4.6, we discuss what properties can be obtained in plane
wave propagation when MO and ME effects occur simultaneously.

For simplicity, the propagation properties of plane waves in a bulk medium are considered, as
shown in Fig. 6. Here, we assume that MO and ME effects occur simultaneously in the medium
and apply the same conditions under which we derived the wave equation in Section 4.6. In other
words, we assume that the magnetization is aligned in the z direction (a = γ, b = 0, c = 0)
and that the diagonal components G and H of the magneto-electric coupling tensor have values
(G = H = ζ).

The wave equation in the medium is expressed by Eq. (37). Assuming that the polarization
state of the incident light is linearly polarized, the Faraday rotation angle of the forward wave θf
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Fig. 6. Schematic diagram of polarization rotation in MO and ME effects in the case of
(a) the forward wave and (d) the backward wave. Polarization states at (b), (e) the input z= 0
and (c), (f) output z=L; (LP: Linear polarization).

and that of the backward wave θb in the medium are obtained as follows.

θf =

(︃
βf− − βf+

2

)︃
z (42a)

θb =

(︃
βb+ − βb−

2

)︃
z (42b)

In addition, βf± and βb± are respectively the solution of the following equations.

f±(β) = β2 ∓ iωβζ − ω2εµ − ω2ζ2 ± ω2µγ = 0 (43a)

b±(β) = β2 ∓ iωβζ − ω2εµ − ω2ζ2 ± ω2µ(−γ) = 0 (43b)

Here, the parameters γ, indicating MO effect, and ζ , indicating ME effect, are both non-zero,
which means that all four propagation constants βf± and βb± have different values. This makes
it possible to control the Faraday rotation angle of the forward and backward waves almost
independently by using two variables, γ and ζ , in Eq. (42).

We calculated the nonreciprocal polarization transformation for the configuration shown in
Fig. 6, and the results are shown in Fig. 7. In this analysis, the permittivity ε and the permeability
µ of the bulk medium are set to 5 and 1, respectively. In addition, two parameters, the real part
of the parameter γ for MO effect and the imaginary part of the parameter ζ for ME effect, are
taken as variables (the imaginary part of γ and the real part of ζ are set to 0). Figures 7(a) and
(b) the effective refractive index difference between LCP and RCP is shown for the forward and
backward waves, respectively. |︁|︁|︁|︁ βf (b)+ − βf (b)−k0

|︁|︁|︁|︁ (44)

The horizontal axis shows the real part of γ, and the vertical axis shows the imaginary part of
ζ . The results show that the polarization rotation angles for the forward and backward waves can
be determined separately by controlling two parameters. In particular, if we choose a parameter
that sets the effective refractive index difference between LCP and RCP in the backward wave
zero (white dotted line in Fig. 7), this suggests the possibility of realizing a unique nonreciprocal
optical device in which the linear polarization rotates only in the forward wave.
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Fig. 7. Effective refractive index difference between LCP and RCP in (a) forward wave and
(b) backward wave.

The magneto-chiral effect is another case of simultaneous MO and ME effects [48,49]. The
magneto-chiral effect has been reported in materials such as organic liquids [50], liquid crystals
[51], and chiral metamaterials [52]. For example, by assuming that the magneto-electric coupling
tensor is G = H = I = ζ , a media that exhibits the magneto-chiral effect can be discussed in the
same way [52].

5.2. Nonreciprocal effect amplification in waveguide

In this section, we discuss what properties can be obtained in waveguide propagation where MO
and ME effects occur simultaneously based on the theory derived in Section 4.7.

First, we consider TM mode propagation in a slab waveguide structure consisting of four layers,
as shown in Fig. 8. It is assumed the top layer is the unique medium in which MO and ME effects
occur simultaneously. In contrast, the other layers (core and cladding layers) consist of a general
dielectric with isotropic properties. Here, the same conditions apply as in Section 4.7 for the top
layer. ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Dx

Dy

Dz

Bx

By

Bz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎝
ε4 0 0

0 ε4 iγ

0 −iγ ε4

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
0 0 0

0 0 0

ζ 0 0

⎞⎟⎟⎟⎟⎠
−

⎛⎜⎜⎜⎜⎝
0 0 ζ

0 0 0

0 0 0

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
µ 0 0

0 µ 0

0 0 µ

⎞⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ex

Ey

Ez

Hx

Hy

Hz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(45)

In this analysis, permeability µ of the each layer is set to 1. It is known that slab waveguides
with MO effect cause nonreciprocal effects in forward and backward waves for TM mode light, as
described in Section 4.3 [53–57]. In this study, we discuss how both MO and ME effects affect
nonreciprocity compared to MO effect only.

In the slab waveguide shown in Fig. 8, the magnetic field Hx and the electric field Ez in the top
and bottom layers are related by multiplying the transfer matrices in the middle layer.

⎛⎜⎝
Hx4(y4)

ωε0Ez4(y4)

⎞⎟⎠ =M3 · M2 ·
⎛⎜⎝

Hx1(y1)

ωε0Ez1(y1)

⎞⎟⎠ (46)
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Fig. 8. Schematic cross section of our proposed waveguide.

where Hxn, Ezn are the magnetic field Hx and the electric field Ez of the n th layer, and yn is the
bottom coordinate of the n th layer. The transfer matrix of the middle layer M2, M3 is given by
the wave equation in Section 4.1 as follows.

Mn (n = 2 or 3) =
⎛⎜⎝

cosh[βn(y − yn)]
iεn
βn

sinh[βn(y − yn)]

βn
iεn

sinh[βn(y − yn)] cosh[βn(y − yn)]

⎞⎟⎠ (47a)

βn (n=2 or 3) =

√︂
β2 − k0

2εn (47b)

Under the assumption that the electromagnetic waves in the top (n = 4) and bottom (n = 1)
layers are perfectly damped, then by the wave equations obtained in Section 4.7, Hx1, Ez1 and
Hx4, Ez4 can each be expressed by the following equations, respectively.

Hx1(y) = Γexp[β1(y − y1)] (48a)

Ez1(y) =
1

iωε0ε1
∂yHx1(y) (48b)

Hx4(y) = Λexp[−β4(y − y4)] (49a)

Ez4(y) = 1
iωε0

ε4
ε42−Γ2

(︂
Γβ
ε4

Hx4(y) + ∂yHx4(y) − iωζHx4(y)
)︂

(49b)

where
β1 =

√︂
β2 − k0

2ε1 (50a)

β4 =

√︄
β2 − k0

2ε4

(︃
1 −
Γ2

ε42

)︃
− ω2ζ2 + i2β

ωζΓ

ε4
(50b)

After substituting Eqs. (48a), (48b), (49a), and (49b) into Eq. (46), let y → ∞ on the left side
of the equation and y → −∞ on the right side. Finally, after rearrangement on Γ and Λ, we can
derive the following equations.

⎛⎜⎝
m11 + m12

β1
iε1

−1

m21 + m22
β1
iε1

ε4
i(ε42−Γ2)

(︂
β4 + iωζ − Γβ

ε4

)︂ ⎞⎟⎠ ⎛⎜⎝
Γ

Λ

⎞⎟⎠ = R ⎛⎜⎝
Γ

Λ

⎞⎟⎠ = 0 (51)

where mij represents each element of the matrix M3 · M2. For Eq. (51) to have a non-trivial
solution, the condition detR = 0 must be satisfied. This allows us to determine the waveguide’s
propagation constants β (refractive index and absorption coefficient). Since the first-order term
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of β appears in Eq. (51) due to MO effect, the waveguide’s propagation constants can be different
for forward and backward waves by changing the sign of β. It also shows that their values vary
with Γ due to MO effect.

Accordingly, Fig. 9 shows the calculation results of the nonreciprocal effects of the slab
waveguide shown in Fig. 8. In this analysis, the dielectric constants ε2, ε1,3 and ε4 of the core,
upper and lower cladding layers, and top layer are set to (3.49)2, (3.16)2 and (3.10)2, respectively.
The parameter Γ related to MO effect on the top layer, was set to −1 + i. The real and imaginary
parts of the parameter ζ related to ME effect, were used as variables to estimate the nonreciprocal
effects (see Table 4).

Fig. 9. Nonreciprocal loss (a) and phase shift (b) for MO and ME effects.

Table 4. Parameters used for calculating device characteristics

Parameters Values Layers

ε1 (3.16)2 Lower cladding layer

ε2 (3.49)2 Core layer

ε3 (3.16)2 Upper cladding layer

ε4 (3.10 + 3i)2 MO&ME layer

Γ4 −1 + i MO&ME layer

y3 − y2 350 nm Core layer

y4 − y3 400 nm Upper cladding layer

Figure 9(a) and Fig. 9(b) plot the analytical results of the NRL and NRPS respectively, where
the horizontal axis represents the real part of ζ and the vertical axis represents the imaginary
part of ζ . The NRL is a parameter used to quantitatively discuss the loss difference between the
forward and backward waves, and is given by the following equation [58].

NRL[dB/mm
]︃
=

10
ln10

NRL[1/mm
]︃
=

|︁|︁|︁|︁|︁ 2Im(βforward)

Re(neff forward)
−

2Im(βbackward)

Re(neff backward)

|︁|︁|︁|︁|︁ × 10−3 (52)

The NRPS is also used to quantitatively discuss the phase difference between the forward and
backward waves during propagation. It is given by the following equation [59].

NRPS[rad/mm] = |Re(βforward) − Re(βbackward)| × 10−3 (53)

The origin of the graph in Fig. 9 is identical to that of the waveguide optical isolator using
the transverse Kerr effect (nonreciprocal effect in a slab waveguide with a medium having only
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MO effect as the top layer) since the real and imaginary parts of ζ are both zero. These results
suggest that the interaction of MO and ME effects may significantly improve the nonreciprocity
compared to MO effect alone.

6. Conclusions

In this study, an optical waveguide theory that can comprehensively discuss MO and ME effects
is proposed. This theory allows propagation properties to be analyzed for all medium that exhibit
MO and ME effects. An optical waveguide containing metamaterials and ferromagnetic materials
is also proposed to control MO and ME effects. It has been shown that the interaction between
MO and ME effects can come about through the choice of the arrangement of the metamaterials
and the direction of magnetization. Thus, it has been shown by simulations that a polarization
control function, such as a polarization rotation in only one direction, is possible in plane wave
propagation. In addition, it is possible to improve the nonreciprocal nature of propagating light
for waveguide propagation. If the ME parameters shown in this study can be realized by using
multiferroic materials and metamaterials, it is expected that entirely new polarization control
devices and optical isolators with smaller size and higher performance will be possible.
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