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Abstract: This study introduced design informatics using deep learning in a topological
photonics system and applied it to a topological waveguide with a sharp bending structure to
further reduce propagation loss. The sharp bend in the topological waveguide composed of two
photonic crystals wherein dielectrics having C6v symmetry were arranged in triangle lattices
of hexagons, and the designing of parameters individually for 6× 6 unit cells near the bending
region using deep learning resulted in an output improvement of 60% compared to the initial
structure. The proposed structural design method has high versatility and applicability for various
topological photonic structures.

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

The research field focused on tracing the topology of electron systems in topological insulators
and Weyl semimetals to photon systems is referred to as topological photonics, which has been
progressing rapidly in recent years [1–4]. The greatest feature of topological photonics is the
creation of photonic structures with mathematically different properties (i.e., different topologies)
by simultaneously controlling interactions within and between unit cells in nanoperiodic structures.
Their benefit is that their local behavior is determined by a global parameter (e.g. spin Chern
number), which is broadly insensitive to local perturbations. This facilitates more flexible design
of devices compared to photonic crystals [5–8], which primarily interact between unit cells, and
metamaterials [9–15], which primarily interact within unit cells.

One of the most well-known phenomena in topological photonics is the topological edge
state that occurs at the interface of two photonic crystals distinct in topology. This allows the
propagation of light with a specific orbital angular momentum and spin [16,17]. Consequently,
unprecedented novel optical functions can be realized on optical circuits, such as light propagation
resistant to sharp bends and unidirectional propagation dependent on circular polarization [18–23].

Figure 1 shows a series of elements that are responsible for propagation, input/output, and
branching in a topological photonic system formed on an optical circuit; however, these are
realized by combining two photonic crystals distinct in topology [16,17,24–26]. Here, if the
parameters could be individually optimized for each unit cell constituting the crystal in the
vicinity of each device (for example, the yellow region in Fig. 1), the device performance may be
improved. However, in reality, the number of parameters increases exponentially, thus, this is not
realistic in terms of calculation costs.

Deep learning is a machine learning method that uses neural networks (particularly multi-
layered neural networks) that reproduce the mechanism of human neurons. It has been introduced
in various fields such as image recognition, speech recognition, and language translation [27–29].
Under such circumstances, the introduction of deep learning has begun in the design of various
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Fig. 1. Series of elements responsible for basic operations in a topological photonics system
formed on an optical circuit. (a) Sharp bending propagation, (b) horizontal coupling with
silicon waveguides, (c) vertical coupling with free space, and (d) branching at a suitable
intensity ratio. In the vicinity of each device (yellow region), if it is possible to optimize the
parameters individually for each unit cell constituting the crystal, there is a possibility that
device performance can be improved.

photonic structures [30,31]. In this study, we introduced design informatics using deep learning
for the first time in a topological photonics system. Adapting the above method to a topological
waveguide with a sharp bending structure, the propagation loss was reduced. This facilitated the
optimization for each unit cell of the topological photonic crystal constituting the device, thereby
enabling more flexible device design.

2. Base element structure

The topological photonic crystals used in this study adopted a typical structure wherein dielectrics
having C6v symmetry were arranged in triangle lattices of hexagon [3]. The unit cell is shown
in Fig. 2(a). The structure within the unit cell was determined by three design parameters: the
length L of one side of the equilateral triangular hole, distance R from the center of the unit cell
to the center of gravity of the equilateral triangular hole, and period a of the unit cell. Here, the
period a was fixed at 730 nm, and the design parameters (L, R) of the two reference photonic
crystals distinct in topology were set to (281, 213) and (284, 264) nm, respectively, to facilitate
operations in the 1.55 µm range, which is the optical communication band (also see Appendix for
band structures of the two reference photonic crystals).

In this study, we considered the formation of a sharp bend in a topological waveguide composed
of two photonic crystals, and improved the bending loss by designing the parameters individually
for 6× 6 unit cells in the vicinity of the bending region, as shown in Fig. 2(b) (The range of 6× 6
was determined to be appropriate based on the mode distribution profiles from the propagation
analysis). Here, when two parameters L and R were considered in 6× 6 unit cells, a total of 72
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Fig. 2. (a) Unit cell of the topological photonic crystal used in this study. A typical structure
in which dielectrics having C6v symmetry were arranged in triangle lattices of hexagon. (b)
A topological waveguide with a sharp bend used in the analysis. We consider improving the
bending loss by designing the parameters individually for 6× 6 unit cells near the bending
region.

parameters were obtained. Owing to the impossibility of maximizing the coupling efficiency
while changing all these parameters deep learning was considered to be effective from such a
perspective.

In this design informatics, we used convolutional neural networks (CNN), which are widely
used during image recognition. When using CNN for image recognition, multiple channels
(R, G, B) can be considered to specify the color of each pixel. Further, we can refer to pixel
position-dependent features that are not considered in fully coupled networks. The above features
are similar to the fact that each unit cell of a topological photonic crystal has each design
parameter (L, R) and that the entire device has acquired a two-dimensional structure combining
unit cells. Thus, CNN is suitable for design informatics in topological photonics.

The overall flow of structural design by deep learning is as follows. First, the datasets to be
used for training were converted (Section 3). The network was then configured and optimized by
learning these datasets (Section 4). Subsequently, the optimized network was used to determine
the structure with high coupling efficiency according to the search algorithm (Section 5).

3. Conversion of datasets used for learning

In the element structure shown in Fig. 2(b), a dataset for deep learning was acquired. Among
the design parameters (L, R) in each unit cell inside the 6× 6 region near the bend, only R was
used as a parameter for deep learning considering the errors when actually fabricating the device.
Thus, Ri (i= 1–36) of each unit cell in the 6× 6 region, and the output value P of the device at
that time were used as a dataset.

First, Ri was randomly changed according to a Gaussian distribution centering on the design
parameter R= 231 and 264 nm of the two reference photonic crystals in order not to break the
topological protection in the waveguide (see Fig. 3(a)). Herein, L was fixed at 281 and 284 nm
for the two reference photonic crystals distinct in topology, respectively. For the output value P,
propagation analysis was conducted employing the finite difference time domain (FDTD) method,
and 2000 trials were conducted to read the output intensity for Ri that was randomly. Here,
Synopsys Rsoft Photonic Device Tools was used for this simulation. In simulation, Rectangle
was used as the light source, and PML was used as the boundary condition. The refractive
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Fig. 3. (a) The Gaussian distribution of the parameter Ri centering on the design parameter
R= 231 and 264 nm of the two reference photonic crystals. Histogram of rescaled input
data. (b) Design parameter Ri of each unit cell: Displacement value from the R value of the
reference photonic crystal. (c) Output value P: Output intensity value after propagation.

index of silicon was set to 3.4764, and the output intensity P was set to monitor intensity/input
intensity (a.u.). Under specific computing resources (Intel Xeon Gold 6238R @ 2.20GH, Core:
28, Memory: 768 GiB), the time required per simulation was about 20 min. Consequently, 2000
combination datasets of the variable Ri and output value P for 36 unit cells were obtained.

Next, the obtained datasets were normalized to render them suitable for learning. Figure 3(b)
and 3(c) shows the histogram of the datasets after normalization. At this time, the variable Ri
was converted into a displacement value from the value of R of the reference photonic crystal,
and rescaled such that the displacement value range was -1 to 1 to further improve the prediction
accuracy. In addition, the output value P was rescaled such that the range of value was 0–1.

4. Network configuration and optimization

Figure 4 shows the configuration diagram of the network used in this study. In this configuration,
padding was performed along the vertical and horizontal directions to provide parameters of
the peripheral structure (the parameter given by padding was 0). For a matrix of 10× 10 after
padding, eight types of feature maps were created by performing convolution using a 3× 3 kernel
(at this time, stride was 1 in both directions). Similarly, in the second layer, convolution was
performed using a 3× 3 filter, and 16 types of feature maps were generated. Thereafter, the third
layer was connected to 576 neurons via the ReLU activation function, the fourth layer to 96
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Fig. 4. Configuration diagram of the network used in this study. By convolving a 10× 10
matrix after padding using a 3× 3 kernel, eight types of feature maps were generated in the
first layer and 16 types in the second layer. The third layer was connected to 576 neurons via
the ReLU activation function, the fourth layer to 96 neurons via ReLU, and the fifth layer to
16 neurons via ReLU by full coupling.

neurons via ReLU, and the fifth layer to 16 neurons via ReLU by full coupling. Finally, they were
combined to obtain one output value.

The above network was trained using the prepared datasets. Of the 2000 datasets prepared in
Section 3, 1900 were used as training data for the network, and the remaining 100 were used as
test datasets. The loss function in the learning was set to mean squared error (MSE), the batch
size was set to 100, and the learning rate was set to 0.001. The learning was repeated until the loss
of the test datasets converged using Adam as the optimization algorithm. MSE is a loss function
used in regression problems and is sensitive to noise in the training data. Since the simulation
data in this study did not contain noise, we adopted MSE. Adam is now widely used and is a
common method [32]. Figure 5(a) shows the number of times of learning vs. prediction error.
As evident, the internal parameters of the network were changed in an appropriate direction.

Fig. 5. (a) Number of times of learning vs. prediction error for 1900 training data. (b)
Accuracy verification results of the output value obtained by propagation analysis by the
FDTD method for 100 test data and the predicted output value by the learned network.
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Fig. 6. (a) Propagation mode distribution in the initial structure without deep learning
process. (b) Propagation mode distribution in the optimal structures obtained by deep
learning process. (c) Time dependence of the output propagation intensity for the initial
and optimal structures. (d) Time-dependent propagation mode distributions in the optimal
structure obtained by deep learning (1 cT= 1/3× 10−15 s).

Figure 5(b) shows the accuracy verification results of the output value P obtained using the
propagation analysis by the FDTD method for 100 test data and the predicted output value P by
the learned network. The correlation coefficient at this time was 0.956, and it was observed that
the propagation characteristics of the topological waveguide whose parameters were designed
individually for 36 unit cells (6× 6 unit cells) near the bending region were predictable by using
this learned network.

5. Structural optimization using learned network

Finally, the 36 unit cells (6× 6 unit cells) near the bending region were optimized using the
learned network to minimize the bending loss of the topological waveguide. In the learned
network, the predicted output value P is expressed as:

P = fNN(R1, R2, R3, R4, . . . , R35, R36 ) (1)

At this time, the following mean squared error is expressed as the loss function.

Loss = (P − P̂)2 (2)
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Fig. 7. Amount of shift from the initial structure of each unit cell in the optimal structure
obtained by deep learning. Red circles indicate the increment (%) of R from the initial
structure, and blue circles indicate the decrement (%) of R from the initial structure.

where P̂ represents the target output value.
First, using the structure Ri (i= 1∼36) that yielded initial value, Ri was updated according to

the following equation based on the gradient descent method.

Ri ← Ri + η
∂Loss
∂Ri

(3)

where η = 0.001 was set, and the target output value P̂ was set to a value slightly higher than the
output value P achieved by the structure. After updating the Ri until Eq. (3) converged, the target
output value P̂ was newly reset, and the above calculation was repeated.

Figures 6(a) and 6(b) shows the propagation mode distributions in the initial structure without
deep learning process (i.e. the structure composed only of two photonic crystals distinct in
topology) and the optimal structure obtained by deep learning process, respectively. From the
mode intensities after passing through the bending region, it can be seen that the bending loss is
suppressed in the optimal structure, and the mode shapes are also maintained as in the initial
structure. Figure 6(c) shows the time dependence of the output intensity for the initial and optimal
structures (the time dependence of the mode distribution in the optimal structure is also shown in
Fig. 6(d)). In the calculations, no changes were made to any structures except for the bending.
Therefore, it can be concluded that the output improvement seen by comparing these results is
due only to the bending structure, which was designed by deep learning. In the optimal structure,
the stable output value P at a certain time after the propagating light reached the output port was
0.211. Compared with the output value 0.135 of the initial structure, an output improvement of
approximately 1.6 times (60%) was confirmed. The best output value P for a total of 2000 data
sets was 0.196, confirming that the best value for the data sets was exceeded.

Topologically protected waveguides are inherently tolerant to steep bending and exhibit
high propagation efficiency. Therefore, in order not to break the topological protection in the
waveguide, as shown in Fig. 3, the deep learning design was also performed with parameter
distributions that do not deviate significantly from the two reference photonic crystals. While this
ensures that topological protection is not broken even in the vicinity of optimized steep bending
structures, the modes of light are appropriately broadened due to the change in photonic bands in
the vicinity of the bending, thereby improving the propagation efficiency by pseudo-relaxation of
the sharp bending.
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Figure 7 shows the amount of shift from the initial structure of each unit cell in the optimal
structure. Here, the red circles indicate the magnitude of the increase rate (%) of R from the
initial structure, and the blue circles indicate the magnitude of the decrease rate (%) of R from
the initial structure. Thus, there is no clear regularity in the structure distribution of unit cells,
and it is useful to adopt the method using deep learning.

6. Conclusion

This study proposed a computational method based on deep learning to improve the propagation
characteristics for sharp bending structures in topological photonic crystals. The structural design
method used in this study has high versatility for topological photonic structures. Thus, this
method is expected to be applied to various topological photonic systems.

Appendix

Figure 8 shows the photonic band structures of the two reference topological photonic crystals
used in this study.

Fig. 8. Band structures of the two reference photonic crystals : (a) (L, R)= (281, 213), (b)
(L, R)= (284, 264) nm.
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